• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Agreement Level of Running Temporal Measurements, Kinetics, and Force-Time Curves Calculated from Inertial Measurement Units

Smith, Austin 01 May 2021 (has links)
Inertial measurement units (IMUs) and wearable sensors have enabled athlete monitoring and research to become more ecologically valid due to their small size and low cost. IMUs and accelerometers that are placed on the body close to the point of impact and that record at sufficiently high frequencies have demonstrated the highest validity when measuring temporal gait event moments such as ground contact time (GCT) and flight time (FT) as well as peak forces (PF) during upright running. While the use of IMUs has increased in the sport performance and athlete monitoring realm, the potential of the technology’s ability to estimate running force-time curves utilizing the two-mass model (TMM) remains unexplored. The purpose of this study was two-fold. First, was to determine the validity of measuring temporal gait events and peak forces utilizing a commercially available shank-mounted inertial measurement unit. Second, was to determine the validity of force-time curves generated from the TMM utilizing data from shank-mounted inertial measurement units. Ten subjects voluntarily completed submaximal treadmill tests equipped with a force plate while wearing shank-mounted IMUs on each leg. Using the raw data from the IMUs, GCT, FT, total step time (ST), PF, and two-mass model-based force-time (F-t) curves were generated for 25 steps at 8 different speeds. Paired sample T-tests were performed on the gait events and peak force between the IMU and treadmill with both individual step comparison and averages per each speed. 95% confidence intervals were calculated for each timepoint of the force time curves. No statistically significant differences (p > 0.05) and nearly perfect relationships were observed for the step averages for each speed with FT, ST, and PF. Confidence intervals of the corrected mean difference suggest that F-t curves calculated from the TMM may not be valid when assessing the running population as a whole. When performing a sub-group analysis of skilled runners and recreational runners, F-t curves derived from shank-mounted IMUs may be more valid in skilled runners than recreational runners. In skilled runners, the 95% CI for the mean difference contained zero within the first 60% of the GCT duration, whereas the 95% CI recreational runners contained a zero-value in a smaller percentage of the GCT located only in the middle of the GCT at the curve peak height. The results of this study suggest that interchangeability between shank-mounted IMUs and force plates may be very limited when estimating temporal gait events and kinetics. While agreement was low between F-t curves after the peak in skilled runners, use of shank-mounted IMUs to estimate F-t curves may have several benefits still in skilled runners when assessing peak forces and force development from initial contact until peak force.
2

The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees

De Asha, Alan R., Buckley, John 04 1900 (has links)
yes / Background: Minimum toe clearance is a critical gait event because it coincides with peak forward velocity of the swing foot, and thus, there is an increased risk of tripping and falling. Trans-tibial amputees have increased risk of tripping compared to able-bodied individuals. Assessment of toe clearance during gait is thus clinically relevant. In able-bodied gait, minimum toe clearance increases with faster walking speeds, and it is widely reported that there is synchronicity between when peak swing-foot velocity and minimum toe clearance occur. There are no such studies involving lower-limb amputees. Objectives: To determine the effects of walking speed on minimum toe clearance and on the temporal relationship between clearance and peak swing-foot velocity in unilateral trans-tibial amputees. Study design: Cross-sectional. Methods: A total of 10 trans-tibial participants walked at slow, customary and fast speeds. Minimum toe clearance and the timings of minimum toe clearance and peak swing-foot velocity were determined and compared between intact and prosthetic sides. Results: Minimum toe clearance was reduced on the prosthetic side and, unlike on the intact side, did not increase with walking speed increase. Peak swing-foot velocity consistently occurred (~0.014 s) after point of minimum toe clearance on both limbs across all walking speeds, but there was no significant difference in the toe–ground clearance between the two events. Conclusion: The absence of speed related increases in minimum toe clearance on the prosthetic side suggests that speed related modulation of toe clearance for an intact limb typically occurs at the swing-limb ankle. The temporal consistency between peak foot velocity and minimum toe clearance on each limb suggests that swing-phase inter-segmental coordination is unaffected by trans-tibial amputation. Clinical relevance The lack of increase in minimum toe clearance on the prosthetic side at higher walking speeds may potentially increase risk of tripping. Findings indicate that determining the instant of peak swing-foot velocity will also consistently identify when/where minimum toe clearance occurs.

Page generated in 0.0694 seconds