Spelling suggestions: "subject:"fait mechanics"" "subject:"gait mechanics""
1 |
Experimental analysis and computational simulation of unilateral transtibial amputee walking to evaluate prosthetic device design characteristics and amputee gait mechanicsVentura, Jessica Dawn 05 October 2010 (has links)
Over one million amputees are living in the United States with major lower limb loss (Ziegler-Graham et al. 2008). Lower limb amputation leads to the functional loss of the ankle plantar flexor muscles, which are important contributors to body support, forward propulsion, and leg swing initiation during walking (Neptune et al. 2001; Liu et al. 2006). Effective prosthetic component design is essential for successful rehabilitation of amputees to return to an active lifestyle by partially replacing the functional role of the ankle muscles. The series of experimental and computer simulation studies presented in this research showed that design characteristics of energy storage and return prosthetic ankles, specifically the elastic stiffness, significantly influence residual and intact leg ground reaction forces, knee joint moments, and muscle activity, thus affecting muscle output. These findings highlight the importance of proper prosthetic foot stiffness prescription for amputees to assure effective rehabilitation outcomes. The research also showed that the ankle muscles serve to stabilize the body during turning the center of mass. When amputees turn while supported by their prosthetic components, they rely more on gravity to redirect the center of mass than active muscle generation. This mechanism increases the risks of falling and identifies a need for prosthetic components and rehabilitation focused on increasing amputee stability during turning. A proper understanding of the effects of prosthetic components on amputee walking mechanics is critical to decreasing complications and risks that are prevalent among lower-limb amputees. The presented research is an important step towards reaching this goal. / text
|
2 |
Heel compliance and walking mechanics using the Niagara Foot ProsthesisWellens, Valérie 15 June 2011
The Niagara Foot (NF) is a relatively new prosthetic design, primarily intended for use in developing countries. It combines low cost and durability with high performance energy return features. The design has been successfully tested mechanically and in field trials, but to date there has been little quantitative gait data describing the performance of the foot. Biomechanical gait analysis techniques will be used to extract quantitative gait measures.
The current study is designed to characterize the effect of heel section stiffness parameter differences between a NF normal heel and a NF with a reduced material heel section., on gait characteristics in persons with unilateral trans-tibial amputations (TTA). Standardized biomechanical gait analysis techniques, adapted for this population, were used to extract quantitative gait measures. Five persons with TTA performed walking tasks while 3D ground reaction forces were recorded via an embedded force platform. A motion capture system also recorded the 3D segmental motion of the lower limbs and torso of each subject. These were combined to calculate net joint moments and mechanical power at the hip and knee of both limbs. These data were compared between a normal NF and a NF with a modified heel. Each participant had a period of two-week adaptation prior to any testing. An EMG system and a prosthesis evaluation questionnaire were used to help analyze the condition. The overall hypothesis of this study was that modification of the heel section stiffness would change several aspects of gait.
Although the gait pattern differences between participants and the low participant number produced no significant differences between the conditions for all variables, trends were observed in multiple outcomes. These results report preliminary evidence that for some participants the heel material reduction does impact their gait by showing a different loading phase during the transition between the heel strike and the full contact with the ground. The NF2 may move the gait toward a more flexed knee position. Furthermore, despite a reduction in the material of the heel section results showed that the overall foot stiffness increased. This may be the result of the one-piece design and mechanics of the NF.
Further investigations with a bigger cohort of people with TTA are required to look at the importance of the impact of the prosthetic foot heel stiffness.
|
3 |
Heel compliance and walking mechanics using the Niagara Foot ProsthesisWellens, Valérie 15 June 2011 (has links)
The Niagara Foot (NF) is a relatively new prosthetic design, primarily intended for use in developing countries. It combines low cost and durability with high performance energy return features. The design has been successfully tested mechanically and in field trials, but to date there has been little quantitative gait data describing the performance of the foot. Biomechanical gait analysis techniques will be used to extract quantitative gait measures.
The current study is designed to characterize the effect of heel section stiffness parameter differences between a NF normal heel and a NF with a reduced material heel section., on gait characteristics in persons with unilateral trans-tibial amputations (TTA). Standardized biomechanical gait analysis techniques, adapted for this population, were used to extract quantitative gait measures. Five persons with TTA performed walking tasks while 3D ground reaction forces were recorded via an embedded force platform. A motion capture system also recorded the 3D segmental motion of the lower limbs and torso of each subject. These were combined to calculate net joint moments and mechanical power at the hip and knee of both limbs. These data were compared between a normal NF and a NF with a modified heel. Each participant had a period of two-week adaptation prior to any testing. An EMG system and a prosthesis evaluation questionnaire were used to help analyze the condition. The overall hypothesis of this study was that modification of the heel section stiffness would change several aspects of gait.
Although the gait pattern differences between participants and the low participant number produced no significant differences between the conditions for all variables, trends were observed in multiple outcomes. These results report preliminary evidence that for some participants the heel material reduction does impact their gait by showing a different loading phase during the transition between the heel strike and the full contact with the ground. The NF2 may move the gait toward a more flexed knee position. Furthermore, despite a reduction in the material of the heel section results showed that the overall foot stiffness increased. This may be the result of the one-piece design and mechanics of the NF.
Further investigations with a bigger cohort of people with TTA are required to look at the importance of the impact of the prosthetic foot heel stiffness.
|
4 |
Variability and local dynamic stability during gait: an investigation of military-relevant load carriage and hip pathologyLoverro, Kari Lyn 06 July 2018 (has links)
The primary goal of human locomotion is to translate the body from point A to point B, but humans must have the variability and stability to adapt and recover from constraints they may encounter. The overarching aim of this dissertation was to investigate how constraints arising from external factors (i.e., military load carriage and speed) and internal factors (i.e., hip pain) affect kinematic variability and local dynamic stability of gait. In study 1, I focus on using traditional biomechanical measures to investigate if females and males use different gait mechanics when carrying military-relevant loads, as females and males are known to use different mechanics when walking with no load. In this study, I found that females and males do use different gait mechanics when walking with military-relevant loads. Females make kinematic adaptations at the ankle and knee while males make kinematic adaptations at the hip. The differences in adaptations between females and males may be related to females’ greater risk of injury when carrying load. In study 2, I used the same cohort to investigate how military-relevant loads affect the kinematic variability and local dynamic stability of gait. I found that kinematic variability and local dynamic stability were similarly affected by load. Participants had greater kinematic variability and decreased local dynamic stability when carrying loads, which may indicate an increased risk of falling while carrying load. I also found that local dynamic stability increased with increased walking speed at all loads in the mediolateral and anteroposterior directions. However, decreased stability was detected in the vertical direction, which may require increased energy expenditure. The results of this study indicate that walking faster with increased loads may be more stable, but less energy efficient. In study 3, I investigated the how kinematic variability and local dynamic stability were affected in individuals with hip pain and a history of developmental dysplasia. I found that kinematic variability and local dynamic stability were not similarly affected in these individuals. I found that kinematic variability was greater in individuals with hip pain compared to healthy controls, but there was no difference in local dynamic stability between groups. The overall finding of this dissertation is that the relationship between kinematic variability and local dynamic stability may be dependent on the factor investigated. / 2020-07-06T00:00:00Z
|
Page generated in 0.0788 seconds