• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • Tagged with
  • 17
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MASSIVELY DISTRIBUTED NEUROMORPHIC CONTROL FOR LEGGED ROBOTS MODELED AFTER INSECT STEPPING

Szczecinski, Nicholas S. 12 March 2013 (has links)
No description available.
12

An Optimization Strategy for Hexapod Gait Transition

Darbha, Naga Harika January 2017 (has links)
No description available.
13

Řízení pohybu robota typu hexapod / Hexapod Robot Movement Control

Žák, Marek January 2015 (has links)
This thesis discusses walking robots issues, their classification, management and construction. There are listed the most famous motion algorithms and their graphical representation. Examples of existing walking robots are also mentioned in this thesis. There are also described modifications of hexapod robot, its hardware and software. The robot is controlled through graphical user interface, which displays data from all sensors, visualises positions of all legs and allows the creation of user defined gaits and its simulations.
14

Development and Assessment of Smart Textile Systems for Human Activity Classification

Mokhlespour Esfahani, Mohammad Iman 13 September 2018 (has links)
Wearable sensors and systems have become increasingly popular for diverse applications. An emerging technology for physical activity assessment is Smart Textile Systems (STSs), comprised of sensitive/actuating fiber, yarn, or fabric that can sense an external stimulus. All required components of an STS (sensors, electronics, energy supply, etc.) can be conveniently embedded into a garment, providing a fully textile-based system. Thus, STSs have clear potential utility for measuring health-relevant aspects of human activity, and to do so passively and continuously in diverse environments. For these reasons, STSs have received increasing interest in recent studies. Despite this, however, limited evidence exists to support the implementation of STSs during diverse applications. Our long-term goal was to assess the feasibility and accuracy of using an STS to monitor human activities. Our immediate objective was to investigate the accuracy of an STS in three representative applications with respect to occupational scenarios, healthcare, and activities of daily living. A particular STS was examined, consisting of a smart socks (SSs), using textile pressure sensors, and smart undershirt (SUS), using textile strain sensors. We also explored the relative merits of these two approaches, separately and in combination. Thus, five studies were completed to design and evaluate the usability of the smart undershirt, and investigate the accuracy of implementing an STS in the noted applications. Input from the SUS led to planar angle estimations with errors on the order of 1.3 and 9.4 degrees for the low-back and shoulder, respectively. Overall, individuals preferred wearing a smart textile system over an IMU system and indicated the former as superior in several aspects of usability. In particular, the short-sleeved T-shirt was the most preferred garments for an STS. Results also indicated that the smart shirt and smart socks, both individually and in combination, could detect occupational tasks, abnormal and normal gaits, and activities of daily living with greater than 97% accuracy. Based on our findings, we hope to facilitate future work that more effectively quantifies sedentary periods that may be deleterious to human health, as well as detect activity types that may be help or hinder health and fitness. Such information may be of use to individuals and workers, healthcare providers, and ergonomists. More specifically, further analyses from this investigation could provide strategies for: (a) modifying a sedentary lifestyle or work scenario to a more active one, and (b) helping to more accurately identify occupational injury risk factors associated with human movement. / PHD / The use of interactive or “smart” textiles that have sensing material(s) incorporated into them supports an emerging technology for physical activity assessment called Smart Textile Systems (STSs). STSs are an increasingly useful technology for researchers, athletes, patients, and others. Our aims in the current study were the development and assessment of a new smart undershirt (SUS) that was designed to monitor low-back and shoulder motions, and to evaluate the preferred placement and usability of two STSs. We also assessed the accuracy of two smart garments, smart socks (SSs) and the SUS, both individually and in combination. Accuracy was evaluated in terms of the ability of these systems to distinguish between diverse simulated occupational tasks, normal and abnormal walking patterns, and several typical daily activities. Our investigation indicated that STSs could discriminate between different human activities common in three domains: occupational scenarios, healthcare, and activities of daily life. We also found that both smart garments (i.e., SSs and SUS) provided similar accuracy for activity classification, typically exceeding 97%, and thus there was no clear superiority between these two smart garments. We conclude that, overall, smart garments represent a promising area of research and a potential alternative for discriminating and monitoring a range of human activities. Use of this technology in the future may have positive implications for health promotion.
15

Six-legged Walking Machine: The Robot-ea308

Erden, Mustafa Suphi 01 July 2006 (has links) (PDF)
The work presented in this thesis aims to make contribution to the understanding and application of six-legged statically stable walking machines in both theoretical and practical levels. In this thesis five pieces of work, performed with and for the three-joint six-legged Robot-EA308, are presented: 1) Standard gaits, which include the well-known wave gaits, are defined and a stability analysis, in the sense of static stable walking, is performed on an analytical level. Various definitions are given / theorems are stated and proved. 2) A free gait generation algorithm with reinforcement learning is developed. Its facilities of stability improvement, smooth speed changes, and adaptation in case of a rear-leg deficiency with learning of five-legged walking are experimented in real-time on the Robot-EA308. 3) Trajectory optimization and controller design is performed for the protraction movement of a three-joint leg. The trajectory generated by the controller is demonstrated with the Robot-EA308. 4) The full kinematic-dynamic formulation of a three-joint six-legged robot is performed with the joint-torques being the primary variables. It is demonstrated that the proposed torque distribution scheme, rather than the conventional force distribution, results in an efficient distribution of required forces and moments to the supporting legs. 5) An analysis of energy efficiency is performed for wave gaits. The established strategies for determination of gait parameters for an efficient walk are justified using the Robot-EA308.
16

Phase Locking in Coupled Oscillators as Hybrid Automata

Calvitti, Alan 27 April 2004 (has links)
No description available.
17

Příprava jezdce na koni od výkonnostního stupně Z do S v drezuře / Preparation of rider on horse from performance level Z to S in dressage

Carva, Radek January 2014 (has links)
Title:Preparation of rider on horse from performance level Z to S in dressage Objectives: Compilation of helpful methodologic material, awareness of fundamental value, correct position of the riders sed, choice of good horse, gaits of horses, characteristic performance levels, characteristics and preparation for the degree Z, characterization and preparation for the degree L, characterization and preparation for the degree S. Methods: Analysis of the literature, comparing information targeted in the content of the work of literature, analysis of my own experiences from my riding praxis, analysis of independent observations of horse riders, analysis of experiences from lessons with my riding students, compilation of information into a complete whole and methodological manual. Results: Preparation of methodological material, which may a rider or trainer of horse riding (dressage) use in their training hours. Keywords: dressage, rider, performance stage, horse, gaits of horses, walk, trot, canter, scale of training, exercises in dressage

Page generated in 0.3029 seconds