• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 11
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 133
  • 73
  • 56
  • 49
  • 37
  • 33
  • 32
  • 31
  • 28
  • 25
  • 20
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Time but no space : resolving the structure and dynamics of active galactic nuclei using time domain astronomy

Starkey, David Andrew January 2017 (has links)
This thesis presents a study of the sub-light year regions of Active Galactic Nuclei (AGN). These environments contain accretion discs that orbit a central super-massive black hole. The luminosity of the AGN inner regions varies over time across all wavelengths with variability at longer wavelengths lagging behind that at shorter wavelengths. Since the AGN themselves are too remote and too compact to resolve directly, I exploit these time lags to infer the physical characteristics of the accretion disc and surrounding gas clouds that emit broad emission lines. These characteristics include the inclination and temperature profile of the accretion disc, and the shape (or light curve) of the luminosity fluctuations that drive the accretion disc variability. This thesis details the work in the first author papers of Starkey et al. (2016, 2017), in which I detail the statistical code, CREAM (Continuum REverberting AGN Markov Chain Monte Carlo), that I developed to analyse AGN accretion disc variability. I apply the code to a set of AGN light curve observations of the Seyfert 1 galaxy NGC 5548 by the AGN STORM collaboration (De Rosa et al., 2015; Edelson et al., 2015; Fausnaugh et al., 2016a; Goad et al., 2016; Starkey et al., 2017). I also present work detailing my variability analysis of the Seyfert galaxies NGC 6814, NGC 2617, MCG 08-11-11 and NGC 4151. This work has contributed to the analysis presented in (Troyer et al. 2016, Fausnaugh et al. submitted). I also investigate the implications of a twin accretion disc structure (Nealon et al., 2015) on the disc time lag measurements across near UV and optical wavelengths. I finish by detailing a modification to CREAM that allows it to merge continuum light curves observed in a common filter, but taken by multiple telescopes with different calibration and instrumental effects to consider.
42

Linking the power sources of emission-line galaxy nuclei from the highest to the lowest redshifts /

Constantin, Anca. January 2004 (has links)
Thesis (Ph. D.)--Ohio University, August, 2004. / Includes bibliographical references (p. 173-185).
43

Linking the power sources of emission-line galaxy nuclei from the highest to the lowest redshifts

Constantin, Anca. January 2004 (has links)
Thesis (Ph.D.)--Ohio University, August, 2004. / Title from PDF t.p. Includes bibliographical references (p. 173-185)
44

DECIPHERING THE ARRANGEMENT OF DUST IN THE CLUMPY TORI OF ACTIVE GALACTIC NUCLEI

Thompson, Grant David 01 January 2012 (has links)
In the framework of active galactic nuclei (AGNs), a galaxy’s supermassive black hole is surrounded by a dusty torus whose clumpy configuration allows for either direct or obscured views toward the central engine. Viewing AGNs from different angles gives rise to a variety of AGN classifications; for example, the generic Type 1 AGN class requires the detection of optically broad emission lines, which arise from quickly moving material within the torus, whereas Type 2 AGNs lack these observations. While these viewing angles are not directly observable, synthetic torus models generated with CLUMPY provide a means to determine them along with other parameters that describe the nature and characteristics of the torus in general. Employing CLUMPY models with mid-infrared spectroscopic observations of a large sample of both Type 1 and Type 2 AGNs allows us to acquire a further understanding of the clumpy torus structure and its viewing angles.
45

Detection of Microvariability in a New Class of Blazar-Like AGN

Maune, Jeremy 12 August 2014 (has links)
Recent research has lead to the possible discovery of a new class of gamma-ray emitting ac- tive galactic nuclei (AGN). These objects – the very radio-loud narrow-line Seyfert 1 galaxies (NLSy1s)– demonstrate observational features suggesting that they are similar to blazars. One of the key characteristics of blazars is the presence of high-amplitude optical microvariability. While this phenomenon has been investigated in individual objects, no study of the intra-night variability of radio-loud NLSy1s as a class has previously been available. This dissertation presents a sys- tematic search for optical variability in a sample of 33 radio-loud NLSy1s. It was found that 26 objects demonstrated microvariations. However, only 9 objects did so with duty cycles comparable to blazars, and only 7 of these 9 objects — J0706+3901, J0849+5108, J0948+0022, J1246+0238, PKS 1502+036, J1644+2619, and IRAS 20181-2244 — demonstrated microvariability at compa- rable amplitudes. Two objects stand out as exceptional sources. J0849+5108 was found to have a duty cycle of ~90% and was observed to undergo an enormous 4-magnitude optical flare in a two-month time span. The object has not been reported to have undergone such an event since 1975. The second object, J0948+0022, is the class prototype. High cadence data indicates that J0948+0022 has a remarkably rapid doubling time scale of ~40 minutes, and it was seen to vary by over 0.9 magnitudes within an individual night. Attempts to correlate microvariability to radio loudness, gamma-ray loudness, and other parameters were largely unsuccessful. However, it was found that only radio-loud NLSy1s that were detected at gamma-ray energies demonstrated microvariability at blazar-like duty cycles. Additionally, an analysis of the frequency of microvariations at various amplitudes suggests that the sample of radio-loud NLSy1s presented in this study share a parent population identical to low energy peaked BL Lac-type (LBL) blazars. This is in agreement with the work of astronomers such as Abdo et al. 2009, who have created spectral energy distributions for a few radio-loud NLSy1s and found them to resemble those of LBLs. Blazar-like variability was found in multiple objects with radio loudnesses of log(R) < 2, suggesting that even moderately radio-loud NLSy1s may be blazar-like objects.
46

Compact objects in active galactic nuclei and X-ray binaries

Cackett, Edward M. January 2007 (has links)
In this thesis I study the inner-most regions of Active Galactic Nuclei (AGN) using the reverberation mapping technique, and neutron star low-mass X-ray binaries in quiescence using X-ray observations. Using the 13-year optical monitoring data for the AGN NGC 5548, the luminosity dependence of the Hβ emitting radius was modelled using a delay map, finding that the radius scales with luminosity as predicted by recent theoretical models. Time-delays between the continuum at different wavelengths in AGN can be used to probe the accretion disc. Here, continuum time-delays in a sample of 14 AGN were used to measure the radial temperature profile of the accretion discs, determine the nuclear extinction, and measure distances to the objects. However, the distances measured correspond to a value for Hubble's constant that is a factor of ~2 lower than the accepted value. The implications of this on the thermal disc reprocessing model are discussed. I present two Chandra observations of the neutron star transient in the globular cluster NGC 6440 in quiescence, where the power-law component to the spectrum is seen to be variable between the observations, suggesting that there is ongoing residual accretion. From a Chandra observation of the globular cluster Terzan 1, I have identifed the likely quiescent counterpart to a transient previously observed in outburst, and discuss the other sources within the cluster. Using Chandra and XMM-Newton monitoring observations of two neutron star transients (KS 1731-260 and MXB 1659-29) in quiescence I have found that the neutron star crusts in both sources have now returned to thermal equilibrium with the core. These observations also indicate that the crusts in both sources may have a high thermal conductivity and that enhanced neutrino emission may be occurring in the core. Finally, the discovery of an X-ray transient with XMM-Newton is presented, and the other sources in this observation discussed.
47

Electron-Scattering Line Profiles in Seyfert Galaxy Nuclei

Weymann, R. J. 07 1900 (has links)
No description available.
48

MALIN: A Quiescent Disk Galaxy|MALIN 1: A Quiescent Disk Galaxy

Impey, C. D., Bothun, G. D. 11 1900 (has links)
We present new optical and radio spectroscopic observations of the remarkable galaxy Malin 1. This galaxy has unique features that include an extremely low surface brightness disk with an enormous mass of neutral hydrogen, and a low luminosity Seyfert nucleus. Malin 1 is exceptional in its values of MHO, LB, and MHI /Ln, and modest in its surface mass density of gas and stars. Spirals with large Min /LB tend to have low mean column densities of HI, and are close to the threshold for star formation due to instabilities in a rotating gas disk. In these terms, Malin 1 has a disk with extremely inefficient star formation. The bulge spectrum is dominated by the absorption features of an old, metal rich stellar population, although there is some evidence for hot (young) stars. The emission line excitations and widths in the nucleus are typical of a Seyfert galaxy; but Malin 1 is in the lowest 5% of the luminosity function of Seyferts, despite a copious fuel supply. Malin 1 is in a low density region of the universe. We propose it as an unevolving disk galaxy, where the surface mass density is so low that the chemical composition and mass fraction in gas change very slowly over a Hubble time. Its properties are similar to those of the damped Lyman -a absorption systems seen in the spectra of high redshift quasars. We emphasize that there are strong observational selection effects against finding gas -rich galaxies that are both massive and diffuse. Finally, we suggest that large and massive HI disks may have formed as early as z - 2, and remained quiescent to the present day. Subject headings : individual (Malin 1) - galaxies : photometry - galaxies : Seyfert - galaxies : stellar content - radio sources : 21 cm radiation - stars : formation
49

MALIN: A Quiescent Disk Galaxy|MALIN 1: A Quiescent Disk Galaxy

Impey, C. D., Bothun, G. D. 11 1900 (has links)
A study of the Galactic Center stellar population is continuing with a sensitive 2μm CCD camera. Using a 64 x 64 detector array, background limited images are recorded with modest amounts of observing time (tob, 20 sec to reach K =13). Magnitudes have been extracted using DAOPHOT from repeated imaging of the central 5' x 5' to search among approximately 1500 stars for long period variables (LPV's, P > 200d), particularily Miras. Miras have a well defined period - luminosity relationship as well as one in period -mass. This program investigates the nature of highly luminous stars at the Galactic Center. Presently 12 variables have been found and have several characteristics consistant with Miras. They have a maximum bolometric luminosity of -4.4 mag which supports the case that high luminosity stars in the central 6 pc are young supergiants.
50

AGN Feedback in Cool-Core Galaxy Clusters

Li, Yuan January 2014 (has links)
Solving the cooling flow problem in cool-core galaxy clusters is critical to under- standing the largest structures in the universe. In addition, cool-core systems are the only places where we have observed direct evidence of AGN feedback, and thus provide the unique opportunity to test models of AGN feedback and various other physical processes. In this thesis we study the influence of momentum-driven AGN feedback on cool-core clusters using high-resolution adaptive mesh refinement (AMR) simulations. We find that run-away cooling first happens only in the central 50 pc region while no local instability develops outside the very center of the cluster. The gas is accreted onto the super-massive black hole (SMBH) which powers AGN jets at an increasing rate as the entropy continues to decrease in the core. The ICM first cools into clumps along the propagation direction of the AGN jets due to the non-linear perturbation. As the jet power increases, gas condensation occurs isotropically, forming spatially extended (up to a few tens kpc) structures that resemble the observed H&alpha; filaments in Perseus and many other cool-core cluster. Jet heating elevates the gas entropy and cooling time, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk. In the last few Gyr, the ICM cools onto the disk directly while the innermost region of the disk continues to accrete onto the SMBH, powering the AGN jets to achieve a thermal balance. The mass cooling rate averaged over 7 Gyr is &sim 30 solarmass/yr, an order of magnitude lower than the classic cooling flow value (which we obtain in runs without the AGN). Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Besides suppressing cooling, our model produces cold structures in early stages (up to &sim 2 Gyr) that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed. Our recent investigation shows that star formation may play an important role.

Page generated in 0.0579 seconds