• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling feedback processes, star formation and outflows in high-redshift galaxies / Modélisation des processus de rétro-action, de la formation stellaire et des vents dans les galaxies à haut redshift

Roos, Orianne 08 September 2016 (has links)
Dans l’Univers, on observe des galaxies lointaines ne formant plus d’étoiles, mais les astrophysiciens n’ont pas encore identifié avec certitude les phénomènes physiques à l’origine de leur “mort”. Pour apporter des éléments de réponse, je me suis penchée sur l’étude de phénomènes qui pourraient y jouer un rôle : les processus de rétroaction des étoiles et des trous noirs supermassifs actifs, la formation stellaire, et les vents galactiques. Le Chapitre 1 présente toutes les notions nécessaires à la compréhension du problème : les caractéristiques des galaxies typiques de l’Univers proche et lointain ; les vents galactiques ; la mort des galaxies; les trous noirs supermassifs actifs (noyaux actifs de galaxies, AGN) et les étoiles ; et leur rétroaction. Dans le Chapitre 2, je présente les techniques numériques utilisées : le code de simulations astrophysiques RAMSES et le code de transfert radiatif Cloudy, que j’ai utilisé pour développer une méthode de calcul de l’état d’ionisation d’une galaxie, détaillée au Chapitre 3. Le Chapitre 4 étudie le couplage entre les trous noirs actifs et les étoiles, avec le projet POGO, Origines Physiques des Vents Galactiques. Durant cette thèse, j’ai montré que les trous noirs actifs n’étaient pas en mesure de tuer subitement leur hôte, même en prenant en compte la rétroaction des étoiles, et que leur couplage peut réduire ou renforcer les vents dans les galaxies en fonction de leur masse. Le Chapitre 5 fait un état de l’art du domaine avant et pendant mon doctorat, reprend les conclusions de cette thèse et donne quelques perspectives, notamment en ce qui concerne le rôle additionnel des rayons cosmiques dans la mort des galaxies / In the Universe, we observe galaxies forming no, or almost no, stars anymore, but astrophysicists do not know yet what physical mechanisms cause their “death”. To give clues to solve the problem, I studied feedback processes from stars and active supermassive black holes, star formation and galactic outflows. Chapter 1 presents all the notions to understand the problem: the characteristics of typical galaxies in the local and distant Universe, galactic outflows, galaxy death, active supermassive black holes, stars, and their feedback processes. In Chapter 2, I describe the numerical techniques I used: the simulation code RAMSES, and the radiative transfer code Cloudy, which I used to develop a computation method to get the ionization state of an entire galaxy. This method is presented in Chapter 3. Chapter 4 studies the coupling between the feedback processes of active supermassive black holes and stars, with the POGO project, Physical Origins of Galactic Outflows. During this thesis, I showed that typical active supermassive black hole cannot suddenly kill their host, even when stellar feedback processes are accounted for, and that their coupling either reduces or enhances the mass outflow rate depending on the mass of the host. In Chapter 5, I give a state-of-the-art about active supermassive black holes before and during my thesis, sum up the conclusions of the work, and give perspectives to enlarge the scope of the study, especially regarding the additional role of cosmic rays in the death of galaxies
2

Star formation across cosmic time and its influence on galactic dynamics / La formation des étoiles au cours de l'histoire de l'univers et son influence sur la dynamique des galaxies

Freundlich, Jonathan 01 December 2015 (has links)
Les observations montrent qu'il y a dix milliards d'années, les galaxies formaient bien plus d'étoiles qu'aujourd'hui. Comme les étoiles se forment à partir de gaz moléculaire froid, cela signifie que les galaxies disposaient alors d'importants réservoirs de gaz, et c'est ce qui est observé. Mais les processus de formation d'étoiles pourraient aussi avoir été plus efficaces : qu'en est-il ? Les étoiles se forment dans des nuages moléculaires géants liés par leur propre gravité, mais les toutes premières étapes de leur formation demeurent relativement mal connues. Les nuages moléculaires sont eux-mêmes fragmentés en différentes structures, et certains scénarios suggèrent que les filaments interstellaires qui y sont observés aient pu constituer la première étape de la formation des coeurs denses dans lesquels se forment les étoiles. En quelle mesure leur géométrie filamentaire affecte-t-elle les coeurs pré-stellaires ? Des phenomènes de rétroaction liés à l'évolution des étoiles, comme les vents stellaires et les explosions de supernovae, participent à la régulation de la formation d'étoiles et peuvent aussi perturber la distribution de matière noire supposée entourer les galaxies. Cette thèse aborde l'évolution des galaxies et la formation des étoiles suivant trois perspectives : (i) la caractérisation des processus de formation d'étoiles à des échelles sous-galactiques au moment de leur pic de formation ; (ii) la formation des coeurs pré-stellaires dans les structures filamentaires du milieu interstellaire ; et (iii) les effets rétroactifs de la formation et de l'évolution des étoiles sur la distribution de matière noire des galaxies. / Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.
3

Role of AGN feedback in galaxy evolution at high-redshift / Rôle de la rétroaction des noyaux actifs de galaxie dans l'évolution des galaxies à haut décalage spectral vers le rouge

Collet, Cédric 28 April 2014 (has links)
Il y a de plus en plus d'indications que les trous noirs super-massifs ont joué un rôle important dans l'évolution des galaxies, en particulier au moment de la formation des galaxies les plus massives à haut décalage spectral vers le rouge (z ~ 2 - 3). Nous nous sommes attachés à quantifier les effets sur le milieu interstellaire des galaxies hôtes que peuvent avoir les jets des radio-galaxies, d'une part, et les importantes luminosités bolometriques des quasars, d'autre part. Pour cela, nous avons étudié la cinématique du gaz ionisé dans 12 radio-galaxies modérément puissantes et dans 11 quasars (6 avec une détection en radio et 5 sans jet détectable) à grand décalage spectral vers le rouge avec le spectro-imageur proche infra-rouge SINFONI du VLT, qui nous donnait accès aux raies d'émission normalement sitées dans le domaine visible. Afin d'évaluer la capacité du NAG à stopper la formation d'étoiles, nous avons cherché des traces de leur rétroaction dans ces galaxies, comme de vents de gaz s'échappant de la galaxie hôte. Dans notre échantillon de radio-galaxies modérément puissantes, nous observons des dispersions de vitesse presque aussi importantes que dans les plus puissantes (avec une FWHM ~ 1000 km/s), mais les quantités de gaz ionisé observées y sont inférieures d'un ordre de grandeur (Mion gas ~ 10^8 - 10^9 Msun) et les gradients de vitesse sont plus faibles (Δv < 400 km/s), quand ils sont observés. Dans notre échantillon de quasars, nous devions d'abord soustraire la composante large des raies d'émission avant de pouvoir étudier leur composante étroite, celle susceptible d'être étendue spatialement. Nous détectons des régions d'émission véritablement étendue autour de quatre des six sources avec une détection en radio et autour d'une seule des cinq sans détection radio. Nous estimons qu'il y a moins de gaz ionisé dans ces sources que dans notre échantillon de radio-galaxies (avec Mion gas ~ 10^7 - 10^8 Msun) et la cinématique de ce gaz est aussi plus calme, similaire à ce qui est observé autour de certains quasars proches. Enfin, de nouvelles observations de deux radio-galaxies particulières nous ont révélé que l'une d'entre elles est entourée de quatorze galaxies-companions et qu'elle se trouve donc dans une partie sur-dense de l'Univers. Nous expliquons donc la morphologie inhabituelle du gaz ionisé présent autour de ces deux radio-galaxies par des cycles répétés d'activité du NAG, en analogie à ce qui est observé dans les amas de galaxies proches, qui sont d'excellents exemples de rétroaction du NAG dans l'Univers local. / There is growing evidence that supermassive black holes may play a crucial role for galaxy evolution, in particular during the formation of massive galaxies at high redshift (z ~ 2 - 3). Our work focuses on quantifying the effects of jets of radiogalaxies and of large bolometric luminosities of quasars on the interstellar gas in their host galaxies. To this end, we studied the kinematics of the ionized gas in 12 moderately powerful radio galaxies and 11 quasars (6 radio-loud and 5 radio-quiet) at high redshifts with rest-frame optical imaging spectroscopy obtained at the VLT with SINFONI. We searched for outflows and other signatures of feedback from the supermassive black holes in the centers of these galaxies to evaluate if the AGN may plausibly quench star formation. In our sample of moderately powerful radiogalaxies, we observe velocity dispersions nearly as large as those observed in the most powerful ones (with FWHM ~ 1000 km/s), but the quantity of ionized gas is decreased by one order of magnitude (Mion gas ~ 10^8 - 10^9 Msun) and velocity gradients tend to be less dramatic (Δv < 400 km/s), when they are observed. In our sample of quasars, we had to carefully subtract the broad spectral component of emission lines to have access to its narrow, and spatially extended, component. We detect truly extended emission line regions in 4/6 sources of our radio-loud subsample and in 1/5 source of our radio-quiet subsample. We estimate that masses of ionized gas in these sources are smaller than in our sample of high-redshift radiogalaxies (with Mion gas ~ 10^7 - 10^8 Msun) and kinematics tend to be more quiescent, akin to what is observed in local quasars. Finally, detailed observations of two outliers among our sample of high-redshift radiogalaxies revealed that one of them is closely surrounded by 14 companions galaxies, hence lying in an overdensity. We therefore interpret the presence and morphology of ionized gas around these galaxies as evidence for repeated cycles ouf AGN outbursts, akin to what can be observed in local clusters of galaxies, which are prime examples of AGN feedback in the nearby Universe.

Page generated in 0.0621 seconds