Spelling suggestions: "subject:"Galaxy: kinematic anda dynamics"" "subject:"Galaxy: kinematic ando dynamics""
11 |
The Apache Point Observatory Galactic Evolution Experiment (APOGEE)Majewski, Steven R., Schiavon, Ricardo P., Frinchaboy, Peter M., Prieto, Carlos Allende, Barkhouser, Robert, Bizyaev, Dmitry, Blank, Basil, Brunner, Sophia, Burton, Adam, Carrera, Ricardo, Chojnowski, S. Drew, Cunha, Kátia, Epstein, Courtney, Fitzgerald, Greg, Pérez, Ana E. García, Hearty, Fred R., Henderson, Chuck, Holtzman, Jon A., Johnson, Jennifer A., Lam, Charles R., Lawler, James E., Maseman, Paul, Mészáros, Szabolcs, Nelson, Matthew, Nguyen, Duy Coung, Nidever, David L., Pinsonneault, Marc, Shetrone, Matthew, Smee, Stephen, Smith, Verne V., Stolberg, Todd, Skrutskie, Michael F., Walker, Eric, Wilson, John C., Zasowski, Gail, Anders, Friedrich, Basu, Sarbani, Beland, Stephane, Blanton, Michael R., Bovy, Jo, Brownstein, Joel R., Carlberg, Joleen, Chaplin, William, Chiappini, Cristina, Eisenstein, Daniel J., Elsworth, Yvonne, Feuillet, Diane, Fleming, Scott W., Galbraith-Frew, Jessica, García, Rafael A., García-Hernández, D. Aníbal, Gillespie, Bruce A., Girardi, Léo, Gunn, James E., Hasselquist, Sten, Hayden, Michael R., Hekker, Saskia, Ivans, Inese, Kinemuchi, Karen, Klaene, Mark, Mahadevan, Suvrath, Mathur, Savita, Mosser, Benoît, Muna, Demitri, Munn, Jeffrey A., Nichol, Robert C., O’Connell, Robert W., Parejko, John K., Robin, A. C., Rocha-Pinto, Helio, Schultheis, Matthias, Serenelli, Aldo M., Shane, Neville, Aguirre, Victor Silva, Sobeck, Jennifer S., Thompson, Benjamin, Troup, Nicholas W., Weinberg, David H., Zamora, Olga 14 August 2017 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R similar to 22,500), high signal-to-noise ratio (>100), infrared (1.51-1.70 mu m) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design-hardware, field placement, target selection, operations-and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.
|
12 |
Dynamics of the Milky Way : tidal streams and extended distribution functions for the Galactic discSanders, Jason Lloyd January 2014 (has links)
One of the key goals of Milky Way science is measuring the distribution of dark matter in the Galaxy. Through the study of Galactic dynamics, inferences can be made about the structure of the Galaxy, and hence the dark matter distribution. To this end, we present a study of methods useful for modelling and understanding dynamical systems in the Galaxy. A natural choice of coordinate system when studying dynamical systems is the canonical system of angle-action coordinates. We present methods for estimating the angle-actions in both axisymmetric and triaxial potentials. These fall into two categories: non-convergent and convergent. The non-convergent methods are fast approaches, mostly based on approximations to Stäckel potentials. We investigate the accuracy of these methods for realistic Galactic potentials. The slower convergent methods operate by constructing generating functions to take us from simple analytically-tractable potentials to our target potential. Tidal streams should prove useful for constraining the large-scale dark matter distribution in the Galaxy. Armed with our new angle-action tools, we investigate the properties of known streams in a realistic Galactic potential. We present a simple algorithm for constraining the Galactic potential using a tidal stream, which exploits the expected structure of a stream in the angle-frequency space of the true potential. We expand this approach into a fully probabilistic scheme that allows for handling of large errors, missing data and outliers. We close by discussing another tool useful for modelling the dynamics of the Galaxy: extended distribution functions for the Galactic disc. We present a simple extension of an action-based distribution function from Binney (2010) that includes metallicity information, and compare the model predictions with current data. These models are essential for incorporating the selection effects of any survey, and reveal the important chemo-dynamic correlations that expose the history and evolution of the Galaxy.
|
13 |
A multi-wavelength study of a sample of galaxy clusters / Susan WilsonWilson, Susan January 2012 (has links)
In this dissertation we aim to perform a multi-wavelength analysis of galaxy clusters. We discuss
various methods for clustering in order to determine physical parameters of galaxy clusters
required for this type of study. A selection of galaxy clusters was chosen from 4 papers, (Popesso
et al. 2007b, Yoon et al. 2008, Loubser et al. 2008, Brownstein & Mo at 2006) and restricted
by redshift and galactic latitude to reveal a sample of 40 galaxy clusters with 0.0 < z < 0.15.
Data mining using Virtual Observatory (VO) and a literature survey provided some background
information about each of the galaxy clusters in our sample with respect to optical, radio and
X-ray data. Using the Kayes Mixture Model (KMM) and the Gaussian Mixing Model (GMM),
we determine the most likely cluster member candidates for each source in our sample. We compare
the results obtained to SIMBADs method of hierarchy. We show that the GMM provides
a very robust method to determine member candidates but in order to ensure that the right
candidates are chosen we apply a select choice of outlier tests to our sources. We determine
a method based on a combination of GMM, the QQ Plot and the Rosner test that provides a
robust and consistent method for determining galaxy cluster members. Comparison between
calculated physical parameters; velocity dispersion, radius, mass and temperature, and values
obtained from literature show that for the majority of our galaxy clusters agree within 3 range.
Inconsistencies are thought to be due to dynamically active clusters that have substructure or
are undergoing mergers, making galaxy member identi cation di cult. Six correlations between
di erent physical parameters in the optical and X-ray wavelength were consistent with
published results. Comparing the velocity dispersion with the X-ray temperature, we found a
relation of T0:43 as compared to T0:5 obtained from Bird et al. (1995). X-ray luminosity
temperature and X-ray luminosity velocity dispersion relations gave the results LX T2:44
and LX 2:40 which lie within the uncertainty of results given by Rozgacheva & Kuvshinova
(2010). These results all suggest that our method for determining galaxy cluster members is
e cient and application to higher redshift sources can be considered. Further studies on galaxy
clusters with substructure must be performed in order to improve this method. In future work,
the physical parameters obtained here will be further compared to X-ray and radio properties
in order to determine a link between bent radio sources and the galaxy cluster environment. / MSc (Space Physics), North-West University, Potchefstroom Campus, 2013
|
14 |
A multi-wavelength study of a sample of galaxy clusters / Susan WilsonWilson, Susan January 2012 (has links)
In this dissertation we aim to perform a multi-wavelength analysis of galaxy clusters. We discuss
various methods for clustering in order to determine physical parameters of galaxy clusters
required for this type of study. A selection of galaxy clusters was chosen from 4 papers, (Popesso
et al. 2007b, Yoon et al. 2008, Loubser et al. 2008, Brownstein & Mo at 2006) and restricted
by redshift and galactic latitude to reveal a sample of 40 galaxy clusters with 0.0 < z < 0.15.
Data mining using Virtual Observatory (VO) and a literature survey provided some background
information about each of the galaxy clusters in our sample with respect to optical, radio and
X-ray data. Using the Kayes Mixture Model (KMM) and the Gaussian Mixing Model (GMM),
we determine the most likely cluster member candidates for each source in our sample. We compare
the results obtained to SIMBADs method of hierarchy. We show that the GMM provides
a very robust method to determine member candidates but in order to ensure that the right
candidates are chosen we apply a select choice of outlier tests to our sources. We determine
a method based on a combination of GMM, the QQ Plot and the Rosner test that provides a
robust and consistent method for determining galaxy cluster members. Comparison between
calculated physical parameters; velocity dispersion, radius, mass and temperature, and values
obtained from literature show that for the majority of our galaxy clusters agree within 3 range.
Inconsistencies are thought to be due to dynamically active clusters that have substructure or
are undergoing mergers, making galaxy member identi cation di cult. Six correlations between
di erent physical parameters in the optical and X-ray wavelength were consistent with
published results. Comparing the velocity dispersion with the X-ray temperature, we found a
relation of T0:43 as compared to T0:5 obtained from Bird et al. (1995). X-ray luminosity
temperature and X-ray luminosity velocity dispersion relations gave the results LX T2:44
and LX 2:40 which lie within the uncertainty of results given by Rozgacheva & Kuvshinova
(2010). These results all suggest that our method for determining galaxy cluster members is
e cient and application to higher redshift sources can be considered. Further studies on galaxy
clusters with substructure must be performed in order to improve this method. In future work,
the physical parameters obtained here will be further compared to X-ray and radio properties
in order to determine a link between bent radio sources and the galaxy cluster environment. / MSc (Space Physics), North-West University, Potchefstroom Campus, 2013
|
Page generated in 0.0651 seconds