• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 9
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 141
  • 141
  • 74
  • 58
  • 39
  • 36
  • 32
  • 27
  • 21
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Massive galaxies at high redshift

Pearce, Henry James January 2012 (has links)
A unique K-band selected high-redshift spectroscopic dataset (UDSz) is exploited to gain further understanding of galaxy evolution at z > 1. Acquired as part of an ESO Large Programme, this thesis presents the reduction and analysis of a sample of ∼ 450 deep optical spectra of a random 1 in 6 sample of the KAB < 23, z > 1 galaxy population. Based on the final reduced dataset, spectrophotometric modelling of the optical spectra and multi-wavelength photometry available for each galaxy is performed using a combination of single and dual component stellar population models. The stellarmass and age estimates provided by the spectrophotometric modelling are exploited throughout the rest of the thesis to investigate the evolution of massive galaxies at z > 1. Focusing on a K-band bright (K < 21.5) sub-sample in the redshift range 1.3 < z < 1.5 the galaxy size-mass relation has been studied in detailed. In agreement with some previous studies it is found that massive, old, early-type galaxies (ETGs) have characteristic radii a factor ~- 1.5 − 3.0 smaller than their local counterparts at a given stellar-mass. Due to the potential errors in spectrophotometric estimates of the stellarmasses at high redshift velocity dispersion measurements are derived for a sub-sample of massive ETGs at z > 1.3 in order to calculate dynamical mass estimates. To date, only a handful of objects at z > 1.3 have individual velocity dispersion estimates in the literature. Here the largest single sample (13 objects) of velocity dispersion measurements at high redshift is presented. The results for the sub-sample of objects with dynamical mass estimates confirm the results based on stellar mass estimates that high redshift massive systems are more compact than their local counterparts. The fraction of K-band bright objects at high redshift that are passively evolving is calculated with specific star-formation rates from the UV rest-frame continuum, [OII] emission and 24μm data. It is concluded that ∼ 58 ± 10% of the K < 21.5, 1.3 < z < 1.5 galaxy population is passively evolving. Various photometric techniques for separating star-forming and passively evolving galaxies are assessed by exploiting the accurate spectral types derived for the UDSz spectroscopic sample. Popular highredshift selection techniques are shown to fail to effectively select complete samples of passive objects with low levels of contamination. Using detailed information available for the UDSz dataset, various techniques are optimised and then used to estimate the passive fraction from the full UDS photometric catalog. The passive fraction results from the full photometric catalog are found to agree well with the results derived from the UDSz sample. With the Visible and Infrared Survey Telescope for Astronomy (VISTA) now starting to produce data, the opportunity has been taken to develop high-redshift galaxy population dividers based on the VISTA filters. Using the first data release from the VISTA Deep Extragalactic Observations (VIDEO) survey (VVDS D1 field), the passive fractions of K-band limited samples have been estimated to compare with results derived in the UDS. Within the errors the passive fraction estimates in the UDS and VISTA VVDS D1 field are found to agree reasonably well. Finally, composite spectra are used to study the evolution of various different galaxy sub-samples as a function of redshift, age, stellar-mass and specific star-formation rate. This work produces an remarkably clean result, showing that the massive, absolute Kband bright, passively evolving ETGs are always the oldest population, with ages close to the age of the Universe at z ∼ 1.4. In contrast, the late-type, low-mass, star-forming galaxies are always found to be much younger systems. This result strongly supports the downsizing scenario, in which more massive systems complete their stellar-mass assembly before lower-mass counterparts.
112

Slupkové galaxie a modifikovaná Newtonova dynamika / Slupkové galaxie a modifikovaná Newtonova dynamika

Bílek, Michal January 2011 (has links)
Our work has two recherchive parts. The first is devoted to the shell galaxies and we describe the observational facts here, different models of origin and the possibility of determining the gravitational potential with the use of shells. The second part is on the modified Newtonian dynamics (MOND). We explain what it consists in, its implications and its experimental tests. The third part is devoted to our numerical simulations of a shell system evolution both in the classical and modified dynamics. Our mission is to explain the differences in the two simulation theoretically and to verify, whether the result of the modified simulation oppose the observed shells around the galaxy NGC 3923. The conclusion is it doesn't, but our test is not very strong.
113

Interaction jet radio-gaz dans des galaxies proches / Radio jet-gas interaction in nearby galaxies

Salomé, Quentin 29 September 2016 (has links)
Les galaxies massives sont moins nombreuses que ce qui est attendu avec le modèle standard (le modèle Λ-CDM). Ceci ce traduit par une formation d’étoiles moins importante que prévue dans les galaxies. Pour expliquer celà, il est globalement accepté que des processus stoppent le formation d’étoiles. Pour les galaxies massives, ceci est expliqué par l’action des trous noirs supermassifs. En accrétant du gaz, le trou noir central produit de l’énergie et de l’impulsion. Quand l’accrétion devient importante, le trou noir forme un noyau actif de galaxie, et l’énergie peut ralentir la formation d’étoiles, par chauffage du gaz, de la turbulence, ou par ablation du gaz (feedback négatif). Cependant, il existe des cas de feedback positif qui favorise la formation d’étoiles en comprimant le gaz. En particulier, une partie des noyaux actifs produisent des jets de plasma qui sont observés en émission radio. Ces jets radio peuvent intéragir avec du gaz le long de leur direction de propagation. Des telles interactions sont susceptibles de déclencher de la formation d’étoiles (formation induite par les jets). Ma thèse porte sur les interactions jet-gaz dans des radio galaxies proches. J’ai étudié l’effet du jet sur l’efficacité de la formation d’étoiles pour des interactions à des échelles globales (quelques kiloparsecs) et intermédiaires (quelques centaines de parsecs). Pour celà, j’ai observé et cartographié le gaz moléculaire, qui est un élément clé de la formation d’étoiles. Cette phase froide est observable grâce aux équipements au sol actuels de radio astronomie, comme ALMA, APEX, NOEMA et le 30m de l’IRAM. / Massive galaxies are less abundant than predicted by the standard model of galaxy formation (the Λ-CDM model). This means that galaxies form less stars than expected. To explain this behaviour, it is commonly accepted that some processes are at play and quench star formation. For massive galaxies, it is explained by the feedback of the supermassive black holes. While accreting gas, the central black hole produces energy and momentum. When gas accretion becomes important, the black hole forms an active galactic nucleus, and the energy is expected to quench star formation, via gas heating, turbulence or gas removal (negative feedback). However, evidence is found of so-called AGN positive feedback that favours star formation by compressing the gas. In particular, a fraction of the AGN population produces jets of plasma that are observed in radio emission. These radio jets may interact with gas that is located along the direction of propagation. Such interactions are invoked to trigger star formation (jet-induced star formation). My PhD focused on the jet-gas interaction for nearby radio galaxies. I explored the effect of the jet on the star formation efficiency in such interactions at global (few kiloparsecs) and intermediate (few hundreds parsecs) scales. To do so, I searched and mapped the molecular gas (via CO emission lines) that is a key ingredient for star formation. This cold gas is observable using current radio astronomy ground-based facilities, like ALMA, APEX, NOEMA and the 30m telescope.
114

Pseudobulges in disk galaxies : growth, structure and frequency in the local Universe

Fisher, David Bradley 27 January 2011 (has links)
Contrary to historic assumptions, bulges in the local Universe present a heterogeneous class of objects. Observations indicate that bulges are bimodal in structure, interstellar medium, stellar populations and dynamical state. Using observations in the UV, optical, near-infrared and mid-infrared we study the nature of local bulge-disk galaxies. The aim is first to find consistent means to differentiate different bulge types. Then we can use these diagnostic methods to study the properties of bulges of each type, thereby better understanding the possible formation mechanisms of each type. Finally, we will use these diagnostic methods to determine how many of each type of bulge exists in the local Universe, and thus understand how the heterogeneity of bulges may affect our understanding of galaxy evolution. Using 3.6-8.0 micron colors we show that dichotomy in bulge morphology is closely tied to the dichotomy in bulge interstellar medium. We find that those bulges with active interstellar medium, per unit stellar mass, have morphological features commonly found in disks (e.g. nuclear spirals, bars and rings). We follow this up with more robust star formation rates, as measured by linear combining UV and 24 micron luminosity, and determine that the boundary is near specific star formation rate ~30 Gyr⁻¹. We also find that the shape of bulge surface brightness profiles correlates well with morphology. When parameterized by a Sérsic function, we find that bulges with n[subscript b]<2 have disk-like morphology and those bulges with n[subscript b]>2 have morphology that is very similar to that of an elliptical galaxy. We thus conclude that bulges with disk-like nuclear morphology, specific star formation rate that is less than 30 Gyr⁻¹, and/or Sérsic index n[subscript b]<2 represents a distinct class of object. We refer to these bulges as "pseudobulges" and the complimentary set of bulges that are inactive, with high Sérsic index, and morphologically like elliptical galaxies is referred to as "classical bulges." We find that a significant amount of evidence points to pseudobulges and classical bulges originating from separate formation mechanisms. First, we rule out the possibility that pseudobulges are the result solely from mass dependent phenomenon. Rather, pseudobulges and classical bulges over lap significantly in mass, luminosity and size. Also, they are found in galaxies of similar mass, luminosity and size. Therefore, pseudobulges are not simply a low-mass phenomenon of the same process. Also, we find that many of the properties of pseudobulges are connected to properties of the outer disk. We find that the half-light radius of pseudobulges correlates linearly with the scale-length of the outer disk. Furthermore, this correlation does not exist for classical bulges. Also, the mass of pseudobulges correlates with the mass of the outer disk. We find that the star formation rate density of pseudobulges is a function of the stellar mass of the exponential outer disk such that pseudobulges with high star formation rate densities only occur more massive stellar disks. Thus it appears that both structure and growth of pseudobulges is a function of the properties of the outer disk. However, classical bulges do not show the same correlations. Also, we find that the star formation rate density of pseudobulges positively correlates with the mass density, classical bulges do not show an analogous correlation. If secular growth were responsible for the formation of pseudobulges, such a correlation should exist. Furthermore, we find that the specific star formation rates of most pseudobulges are high enough to account for the stellar mass within the typical ages of disk (~10 Gyr). We also show that classical bulges participate in the same structural parameter correlations as elliptical galaxies. Just like elliptical galaxies, as classical bulges become brighter they also become larger in radius, lower in surface density, and have higher Sérsic index. However pseudobulges behave very differently. There is little-to-no correlation between the size of pseudobulges and the luminosity, surface brightness or Sérsic index. We stress that this observation extends of 9 magnitudes in brightness. Therefore the size of pseudobulges, has thus far only been found to correlate with the size of the outer disk. Furthermore we find that pseudobulges show a positive correlation between surface density and luminosity. The behavior of pseudobulges in these parameter correlations implies that they are not virialized stellar systems that have experienced violent relaxation. Thus it is likely that the formation of pseudobulges is not like that of elliptical galaxies and classical bulges. Furthermore, the connection between pseudobulge properties and those of their associated outer disk seem to favor long-term growth that is more likely to be driven by disk processes, commonly called "secular evolution." Finally we show that the dichotomy of bulge types has a strong influence on our understanding of galaxy evolution. We find that global galaxy properties are tied to the bulge dichotomy. Galaxies with pseudobulges are found to be in "blue sequenc" galaxies and those with classical bulges are found to be in "red sequence" galaxies. A large body of literature has shown that blue and red galaxies appear to be distinct classifications of galaxies. The correlation with bulge type implies that the bulge dichotomy may be also be a consequence of the bimodal nature of galaxy evolution. Finally, we show that in the local Universe pseudobulges are by far the most common type of massive galaxy. We find that only 17% of galaxies have a detectable classical bulge. Also we show that over 3/4 of the star formation in spiral and elliptical galaxies in the local Universe occurs in galaxies with pseudobulges. Thus understanding pseudobulges is a necessary step to understanding the processes that have lead to the population of galaxies in the nearby Universe. / text
115

Properties of Intergalactic Filaments at z = 2 and Implications for the Evolution of Galaxies / Propriétés des filaments intergalactiques à z=2 et implications pour l'évolution des galaxies

Cornuault, Nicolas 25 September 2017 (has links)
L'évolution des galaxies implique un apport de gaz «froid» depuis la toile cosmique. Mais les modèles l'intégrant induisent des galaxies plus riches en baryons que les galaxies observées. Pour surmonter ce problème, les théoriciens comptent sur une formation d'étoiles rendue inefficace par une éjection massive de gaz par les disques en formation stellaire. J'explore une voie différente en étudiant les processus qui peuvent modérer l'accrétion de gaz. Nous présentons un scénario phénoménologique où le gaz accrété, s'il y a un choc viriel, devient biphasique et turbulent. Nous montrons que ce développement se produit pour des halos de ~ 10^11 à 10^13 Msol, où la majeure partie des étoiles est déjà formée dans les galaxies. Le gaz provenant de filaments intergalactiques (FIG) peut finalement perdre sa cohérence et se mélanger avec le gaz ambiant du halo. L'interaction directe entre les éjections galactiques et l'accrétion est accrue. Modérer ainsi l'efficacité de l'accrétion peut aider à surmonter l'important défi évoqué. En utilisant le code Ramses, j'ai effectué une simulation ciblée et extrait les résultats pour un FIG accrétant sur un halo de ~ 3 10^11 Msol à z ~ 2. J'ai étudié la thermodynamique et la structuration de la matière, le long et à travers le FIG. J'ai suivi l'évolution de plusieurs quantités importantes le long du FIG et dérivé un cadre plus précis pour étudier les FIG, ainsi que les conséquences sur leur sort après avoir pénétré dans un halo. J'utilise enfin ces résultats pour extrapoler les processus que la simulation peut ne pas avoir capturés avec précision. / We now understand theoretically that galaxy evolution involves inflows of “cold” gas from the cosmic web. But corresponding models grow galaxies with amounts of baryons larger than observed galaxies. To overcome this issue, theorists focus on making star formation inefficient by massively blowing gas out of star-forming disks. I explore a different road, investigating processes that may moderate gas accretion onto disks. We present a phenomenological scenario where gas accretion flows – if it is shocked – become biphasic and, as a result, turbulent. In this framework, we show that the formation of warm, turbulent clouds, embedded in a hot component, occurs in the important mass range of ∼ 10^11 − 10^13 Msun, where the bulk of stars have formed in galaxies. Gas accreted from intergalactic filaments (IGF) may eventually lose coherence and mix with the ambient halo gas. The direct interaction between galaxy feedback and accretion streams is thus more likely. Moderating the accretion efficiency may help to alleviate a number of significant challenges in theoretical galaxy formation. Using the code Ramses, I performed a zoom-in simulation and extracted the results for a particular accreting IGF into a halo of ∼ 3 10^11 Msun at z ∼ 2. I investigate the gas thermodynamics and structuration, along and across the filament, with respect to dark matter. I study several key quantities as they evolve along the filament and derive a refined paradigm to study filaments, as well as consequences regarding their fate after entering a halo. I finally make use of these results to extrapolate gas processes that the simulation may not have captured accurately.
116

The cosmological X-ray evolution of stars, AGN, and galaxies

Watson, Casey Richard 14 July 2006 (has links)
No description available.
117

The cosmic web unravelled : a study of filamentary structure in the Galaxy and Mass Assembly survey

Alpaslan, Mehmet January 2014 (has links)
I have investigated the properties of the large scale structure of the nearby Universe using data from the Galaxy and Mass Assembly survey (GAMA). I generated complementary halo mass estimates for all groups in the GAMA Galaxy Group Catalogue (G³C) using a modified caustic mass estimation algorithm. On average, the caustic mass estimates agree with dynamical mass estimates within a factor of 2 in 90% of groups. A volume limited sample of these groups and galaxies are used to generate the large scale structure catalogue. An adapted minimal spanning tree algorithm is used to identify and classify structures, detecting 643 filaments that measure up to 200 Mpc/h, each containing 8 groups on average. A secondary population of smaller coherent structures, dubbed `tendrils,' that link filaments together or penetrate into voids are also detected. On average, tendrils measure around 10 Mpc/h and contain 6 galaxies. The so-called line correlation function is used to prove that tendrils are real structures rather than accidental alignments. A population of isolated void galaxies are also identified. The properties of filaments and tendrils in observed and mock GAMA galaxy catalogues agree well. I go on to show that voids from other surveys that overlap with GAMA regions contain a large number of galaxies, primarily belonging to tendrils. This implies that void sizes are strongly dependent on the number density and sensitivity limits of the galaxies observed by a survey. Finally, I examine the properties of galaxies in different environments, finding that galaxies in filaments tend to be early-type, bright, spheroidal, and red whilst those in voids are typically the opposite: blue, late-type, and more faint. I show that group mass does not correlate with the brightness and morphologies of galaxies and that the primary driver of galaxy evolution is stellar mass.
118

Spectroscopic analysis of primeval galaxy candidates

Caruana, Joseph January 2013 (has links)
This thesis presents spectroscopic observations of z ≥ 7 galaxy candidates in the Hubble Ultra Deep Field, which were selected with HST WFC3 imaging, using the Lyman-Break technique. Four z-band (z ≈ 7) dropout galaxies were targeted with Gemini/GNIRS, one z-band dropout galaxy and three Y -band (z ≈ 8 − 9) dropout galaxies with VLT/XSHOOTER, and 22 z-band dropouts with VLT/FORS2, where 15 of the latter are strong candidates. No evidence of Lyman-α emission is found, and the upper limits on the Lyman-α flux and the broad-band magnitudes are used to constrain the rest-frame equivalent widths for this line emission. Amongst the targeted objects, observations were made of HUDF.YD3, a relatively bright Y -band dropout galaxy likely to be at z ≈ 8 − 9 on the basis of its colours in the HST ACS and WFC3 images. Lehnert et al. (2010) observed this galaxy using the VLT/SINFONI integral field spectrograph and claim that it exhibits Lyman-α emission at z = 8.55. In observations of this object described in this thesis, which were made with VLT/XSHOOTER and Subaru/MOIRCS, this line was not reproduced despite the expected signal in the combined MOIRCS & XSHOOTER data being 5σ. Hence it appears unlikely that the reported Lyman-α line emission at z > 8 is real. Accounting for incomplete spectral coverage, in total (across all spectro- graphs) 9.63 z-band dropouts and 1.15 Y -band dropouts are surveyed to a Lyman-α rest-frame Equivalent Width better than 75 ̊A. A model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3−6.5 is inconsistent with these non-detections at z = 7−9 at a confidence level of ∼ 91%, which may indicate that a significant neutral HI fraction (χHI) in the intergalactic medium suppresses the Lyman-α line at z > 7. In particular, the lack of detection of Lyman-α emission in this spectroscopy is compared with results at lower redshift by Stark et al. (2010), who derive a mapping between Lyman-α fractions and χHI based on radiative transfer simulations by McQuinn et al. (2007). These results suggest a lower limit of χHI ~ 0.5.
119

Les amas DAFT/FADAS : Evolution et cosmologie

Guennou, Loic 20 June 2012 (has links)
Je présente dans cette thèse les résultats obtenus à partir de la collaboration Franco Américaine appelée le Dark energy American French Team/ French American DArk energy Team (DAFT/FADA). Le but de la collaboration DAFT/FADA est de mener à bien un sondage sur la tomographie par lentilles faibles de riches amas de galaxies compris entre les redshifts z=0.4 et z=0.9. Contrairement aux autres méthodes comme les supernovae ou les comptages d'amas de galaxies, la tomographie par lentilles faibles est purement basée sur la géométrie et ne dépend pas de la connaissance sur la physique des objets utilisés comme indicateurs de distance. De plus, la raison pour analyser les observations dans la direction des amas est que le signal de cisaillement est augmenté d'un facteur 10 par rapport aux galaxies de champs. Notre travail contiendra les résultats de 91 riches amas de galaxies provenant du HST combiné avec le travail sur des données sol pour obtenir des redshifts photométriques. Cette combinaison de redshifts photométriques et de tomographie avec lentilles minces nous permettra de contraindre les équations d'état avec l'énergie noire, ainsi que l'évolution des propriétés des amas avec le redshift. C'est dans ce cadre que, durant ma thèse, j'ai étudié le comportement et des composants des amas DAFT/FADAS eux-mêmes. Cela s'est traduit par une étude de la lumière diffuse contenue dans 10 amas ainsi qu'une étude dynamique sur une gamme de redshifts allant de z=0.4 _a z=0.8. / I present in this thesis the results obtained from the American French collaboration called the Dark energy American French Team/French American DArk energy Team (DAFT/FADA). The goal of the DAFT/FADA collaboration is to carry out a weak lensing tomography survey of z = 0.4-0.9 rich clusters of galaxies. Unlike supernovae or other methods such as cluster of galaxy counts, weak lensing tomography is purely based on geometry and does not depend on knowledge of the physics of the objects used as distance indicators. In addition, the reason for analyzing observations in the direction of clusters is that the shear signal is enhanced by about 10 over the feld. Our work will contain results obtained on 91 rich clusters from the HST archive combined with ground based work to obtain photo-zs. This combination of photo-z and weak lensing tomography will enable us to constrain the equation of state of dark energy, and the cluster properties evolution with redshift. In this framework, during my PhD, I studied the behaviour and the comnents of the DAFT/FADAS clusters themselves. More precisely, I studied the difuse light contained within 10 clusters of the syrvey as well as their dynamical behaviour on a range of redshifts between z=0.4 and 0.8. indeed, The galaxy clusters themselves are still an important feld of study nowadays, mainly due to the fact they are the largest, at least partially virialized, structures we can observe, allowing us to better understand the history and evolution of our Universe. I present here the latest results obtained so far in my work on the DAFT/FADAS survey.
120

Galaxy Evolution in Clusters / Evolução de Galáxias em Aglomerados

Ruggiero, Rafael 10 December 2018 (has links)
In this thesis, we aim to further elucidate the phenomenon of galaxy evolution in the environment of galaxy clusters using the methodology of numerical simulations. For that, we have developed hydrodynamic models in which idealized gas-rich galaxies move within the ICM of idealized galaxy clusters, allowing us to probe in a detailed and controlled manner their evolution in this extreme environment. The main code used in our simulations is RAMSES, and our results concern the changes in gas composition, star formation rate, luminosity and color of infalling galaxies. Additionally to processes taking place inside the galaxies themselves, we have also described the dynamics of the gas that is stripped from those galaxies with unprecedented resolution for simulations of this nature (122 pc in a box including an entire 1e14 Msun cluster), finding that clumps of molecular gas are formed within the tails of ram pressure stripped galaxies, which proceed to live in isolation within the ICM of a galaxy cluster for up to 300 Myr. Those molecular clumps possibly represent a new class of objects; similar objects have been observed in both galaxy clusters and groups, but no comprehensive description of them has been given until now. We additionally create a hydrodynamic model for the A901/2 multi-cluster system, and correlate the gas conditions in this model to the locations of a sample of candidate jellyfish galaxies in the system; this has allowed us to infer a possible mechanism for the generation of jellyfish morphologies in galaxy cluster collisions in general. / Nesta tese, nós visamos a contribuir para o entendimento do fenômeno da evolução de galáxias no ambiente de aglomerados de galáxias usando a metodologia de simulações numéricas. Para isso, desenvolvemos modelos hidrodinâmicos nos quais galáxias idealizadas ricas em gás movem-se em meio ao gás difuso de aglomerados de galáxias idealizados, permitindo um estudo detalhado e controlado da evolução destas galáxias neste ambiente extremo. O principal código usado em nossas simulações é o RAMSES, e nossos resultados tratam das mudanças em composição do gás, taxa de formação estelar, luminosidade e cor de galáxias caindo em aglomerados. Adicionalmente a processos acontecendo dentro das próprias galáxias, nós também descrevemos a dinâmica do gás que é varrido dessas galáxias com resolução sem precedentes para simulações dessa natureza (122 pc em uma caixa incluindo um aglomerado de 1e14 Msun inteiro), encontrando que aglomerados de gás molecular são formados nas caudas de galáxias que passaram por varrimento de gás por pressão de arraste, aglomerados estes que procedem a viver em isolamento em meio ao gás difuso de um aglomerado de galáxias por até 300 Myr. Esses aglomerados moleculares possivelmente representam uma nova classe de objetos; objetos similares foram previamente observados tanto em aglomerados quanto em grupos de galáxias, mas um tratamento compreensivo deles não foi apresentado até agora. Nós adicionalmente criamos um modelo hidrodinâmico para o sistema multi-aglomerado A901/2, e correlacionamos as condições do gás nesse modelo com a localização de uma amostra de galáxias jellyfish nesse sistema; isso nos permitiu inferir um possível mecanismo para a geração de morfologias jellyfish em colisões de aglomerados de galáxias em geral.

Page generated in 0.0951 seconds