Spelling suggestions: "subject:"galaxy evolution"" "subject:"galaxyp evolution""
71 |
Probing galaxy evolution by unveiling the structure of massive galaxies across cosmic time and in diverse environmentsWeinzirl, Timothy Michael 13 September 2013 (has links)
How galaxies form and evolve is one of the primary outstanding problems in extragalactic astronomy. I conduct a quantitative census of the relative importance of the major structural components (flattened and dynamically cold disk-dominated components versus puffy and dynamically hot spheroidal or triaxial bulges/ellipticals) in massive galaxies over cosmic time and across different environments in order to explore how galaxies evolve under the action of the various assembly mechanisms (major mergers, minor mergers, gas accretion, and internal secular processes) in these different regimes. I perform three inter-related analyses focusing on massive galaxies from z ~ 0 - 3 in both field and rich cluster environments. Important strengths of this thesis include the use of high-resolution, panchromatic imaging from some of the largest and deepest galaxy surveys with the Hubble Space Telescope (HST), Spitzer, and Chandra space telescopes, and also the inclusion of detailed comparisons between the empirical data and hierarchical ΛCDM-based models of galaxy evolution. / text
|
72 |
The Dynamics and Evolution of Supermassive Black Holes in Merging GalaxiesBlecha, Laura Elizabeth 03 August 2012 (has links)
This thesis is a theoretical study of supermassive black holes (SMBHs) in merging galaxies. We consider the dynamics that govern inspiralling SMBH pairs and gravitational-wave (GW) recoiling SMBHs, as well as the fueling of active galactic nuclei (AGN) during galaxy mergers. In particular, we focus on the observable signatures that could distinguish dual or recoiling AGN from those in isolated galaxies, and we explore the implications of these events for the coordinated evolution of SMBHs and galaxies. In the second and third chapters, semi-analytical models for GW-recoiling SMBHs are developed. The second chapter illustrates that bound recoiling SMBHs may have long wandering timescales and that recoil events can self-regulate SMBH growth. In the third chapter, we study the evolution of recoiling SMBHs in evolving, gaseous merger remnants. We find that the presence of gas greatly influences recoiling SMBH trajectories and may partially suppress even large recoil kicks in some cases. We also show that kinematically- and spatially-offset AGN can have substantial lifetimes for a wide range in kick speeds. Finally, this chapter illustrates that GW recoil influences the observed SMBH-galaxy relations as well as central star formation in the merger remnant. In the fourth chapter we turn our attention to inspiralling SMBH pairs with kiloparsec-scale separations. We use a novel approach to model the narrow-line emission from these SMBH pairs, in order to understand their relationship to observations of double-peaked narrow-line AGN. Our results indicate that double-peaked narrow-line AGN often arise from gas kinematics rather than from dual SMBH motion, but that the latter are a generic, short-lived phase of SMBH inspiral in gaseous mergers. We identify several diagnostics that could aid in distinguishing the true AGN pairs in the double-peaked sample. Finally, the fifth chapter examines a particular galaxy that exhibits signatures of both a recoiling AGN and an AGN pair. Applying methods developed throughout this thesis, we design models for both scenarios that are well-matched to the available data. Currently, neither possibility can be excluded for this object, but our models constrain the most relevant parameters for etermining its nature and for the design of future observations. / Astronomy
|
73 |
Modeling Spatially and Spectrally Resolved Observations to Diagnose the Formation of Elliptical GalaxiesSnyder, Gregory Frantz 30 September 2013 (has links)
In extragalactic astronomy, a central challenge is that we cannot directly watch what happens to galaxies before and after they are observed. This dissertation focuses on linking predictions of galaxy time-evolution directly with observations, evaluating how interactions, mergers, and other processes affect the appearance of elliptical galaxies. The primary approach is to combine hydrodynamical simulations of galaxy formation, including all major components, with dust radiative transfer to predict their observational signatures. The current paradigm implies that a quiescent elliptical emerges following a formative starburst event. These trigger accretion onto the central supermassive black hole (SMBH), which then radiates as an active galactic nucleus (AGN). However, it is not clear the extent to which SMBH growth is fueled by these events nor how important is their energy input at setting the appearance of the remnant. This thesis presents results drawing from three phases in the formation of a typical elliptical: 1) I evaluate how to disentangle AGN from star formation signatures in mid-infrared spectra during a dust-enshrouded starburst, making testable predictions for robustly tracing SMBH growth with the James Webb Space Telescope ; 2) I develop a model for the rate of merger-induced post-starburst galaxies selected from optical spectra, resolving tension between their observed rarity and merger rates from other estimates; and 3) I present results from Hubble Space Telescope imaging of elliptical galaxies in galaxy clusters at 1 < z < 2, the precursors of present-day massive clusters with \(M \sim10^{15}M_{\odot}\), demonstrating that their stars formed over an extended period and ruling out the simplest model for their formation history. These results lend support to a stochastic formation history for ellipticals driven by mergers or interactions. However, significant uncertainties remain in how to evaluate the implications of galaxy appearance, in particular their morphologies across cosmic time. In the final chapter, I outline an approach to build a "mock observatory" from cosmological hydrodynamical simulations, with which observations of all types, including at high spatial and spectral resolutions, can be brought to bear in directly constraining the physics of galaxy formation and evolution. / Astronomy
|
74 |
Studying star formation at low and high redshift with integral field spectroscopyBlanc, Guillermo 01 June 2011 (has links)
In this thesis I focus mainly in studying the process of star formation in both high redshift, and local star forming galaxies, by using an observational technique called integral field
spectroscopy (IFS). Although these investigations are aimed at studying the star formation properties of these objects, throughout this work I will
also discuss the geometric, kinematic, and chemical structures in the inter-stellar medium of these galaxies, which are intimately connected with
the process of star formation itself. The studies presented here were conducted under the umbrella of two different projects. First, the HETDEX Pilot Survey for Emission Line Galaxies, where I have studied the properties of Ly-alpha emitting galaxies across the 2<z<4 range, with an emphasis in trying to understand the process by which Ly-alpha photons, produced in large quantities in the active star forming regions, are able to escape the ISM of
these objects, allowing us to detect them in the Ly-alpha line. The second project from which results are presented here is the VIRUS-P Exploration of Nearby Galaxies (VENGA), an ongoing campaign to obtain spatially resolved spectroscopy over a broad wavelength range for large portions of the disks of 30 nearby spiral galaxies. In this thesis, the VENGA data is used to study the physical parameters that
set the rate of star formation in the different environments present
within galaxies in the local universe. / text
|
75 |
Understanding the Circumgalactic Medium Through Hydrodynamic Simulations and Hubble's Cosmic Origins SpectrographFord, Amanda Brady January 2014 (has links)
My dissertation focuses on a relatively new field of study: the region immediately around galaxies known as the circumgalactic medium (CGM). The CGM holds vast quantities of mass and metals, yet its connection to galaxies is not well understood. My work uses cosmological hydrodynamic simulations and comparisons to data from Hubble's Cosmic Origins Spectrograph (COS) to understand the CGM's connection to galaxy evolution, gas accretion, outflows, star formation, and baryon cycling. This includes studies of the CGM's extent and physical conditions; the cause and nature of outflows; gas dynamics, including the first comprehensive study of tracers of inflowing and outflowing gas at low redshift (z=0.25); and direct comparison of theoretical results to observational data. Chapter 1 introduces my research and show its connection to galaxy evolution. Chapter 2 investigates hydrogen and metal line absorption around low-redshift galaxies in cosmological hydrodynamic simulations. This chapter studies different models for stellar outflows, physical conditions, and dependencies on halo mass. Chapter 3 examines the flow of gas into, out of, and around galaxies using a novel particle tracking technique. This chapter examines the baryon cycle in detail for our preferred model of stellar outflows. Chapter 4 compares our model results, including two separate prescriptions for outflows, with data from COS. We contrast these wind models, showing how they cycle baryons differently, and show degeneracies in observational diagnostics. In Chapter 5, I summarize and discuss plans for future research in this field, and how it can be more fully leveraged to understand galaxy evolution.
|
76 |
Chemical composition of kinematically identified galactic stellar group / Cheminė kinematiškai identifikuotos Galaktikos žvaigždžių grupės sudėtisStonkutė, Edita 25 September 2013 (has links)
A number of stellar streams, moving and kinematic groups were identified in the Milky Way galaxy. Some of them are suspected to originate from accreted satellites. Can we also find such traces of ancient merger events in the solar neighbourhood? Helmi et al. (2006) identified three new coherent groups of stars in the Geneva-Copenhagen survey (Nordström et al. 2004) and suggested that those might correspond to remains of disrupted satellites.
With the detailed chemical composition analysis of the newly identified kinematic group we aim to contribute to the Galactic substructure studies. The main aim of the study is to perform a high-resolution spectroscopic elemental abundance analysis in stars belonging to one of the newly identified kinematic groups and to compare the results with other stars in the Galactic disc.
We performed the detailed chemical analysis of 21 stars attributed to Group 3 of the Geneva-Copenhagen survey and six comparison Galactic thin disc stars. The main atmospheric parameters and abundances of 22 chemical elements were determined. All programme stars are overabundant in oxygen and α-elements compared with the Galactic thin-disc. This abundance pattern has similar characteristics to those of the Galactic thick disc. The abundances of chemical elements produced predominantly by the r-process are overabundant in comparison with Galactic thin-disc dwarfs of the same metallicity. The abundances of iron-group elements and chemical elements produced mainly... [to full text] / Paukščių Tako galaktikoje yra identifikuota žvaigždžių srautų, judančių bei kinematinių grupių, kurių kilmė siejama su įkritusiomis galaktikomis. Aktualu ištirti, ar yra tokių senųjų substruktūrų pėdsakų mūsų Saulės aplinkoje?
Helmi ir kt. (2006), panaudoję Nordström ir kt. (2004) Ženevos–Kopenhagos apžvalgos (ŽKA) katalogą, identifikavo tris naujas koherentines žvaigždžių grupes, kurios pasižymi išskirtiniais kinematiniais parametrais ir gali būti užgalaktinės kilmės.
Šiuo disertacijos darbu siekiama prisidėti prie Galaktikos substruktūrų tyrimų, nustatant detalią cheminę vienos iš Helmi ir kt. identifikuotų žvaigždžių grupių sudėtį. Svarbu išsiaiškinant, ar ŽKA kinematinės grupės žvaigždžių atmosferų cheminė sudėtis skiriasi nuo Galaktikos disko žvaigždžių.
Nustatėme 21 3–osios ŽKA kinematinės grupės bei 6 palyginamųjų plonojo disko žvaigždžių atmosferų pagrindinius parametrus bei 22 cheminių elementų gausas. Kinematinės žvaigždžių grupės deguonies ir α–elementų gausos yra padidėjusios lyginant su plonuoju disku ir yra panašios į storojo disko. Cheminių elementų, daugiausia pagaminamų s–procese, gausos ir geležies grupės elementų gausos yra panašios į to paties metalingumo plonojo disko nykštukių cheminių elementų gausas, o cheminių elementų, daugiausia pagaminamų r–procese, gausos yra padidėjusios lyginant su plonuoju disku.
Panaši cheminė tirtos kinematinės grupės bei storojo Galaktikos disko sudėtis rodo, kad kinematinės žvaigždžių grupės ir storojo disko žvaigždžių... [toliau žr. visą tekstą]
|
77 |
Cheminė kinematiškai identifikuotos Galaktikos žvaigždžių grupės sudėtis / Chemical composition of kinematically identified galactic stellar groupStonkutė, Edita 25 September 2013 (has links)
Paukščių Tako galaktikoje yra identifikuota žvaigždžių srautų, judančių bei kinematinių grupių, kurių kilmė siejama su įkritusiomis galaktikomis. Aktualu ištirti, ar yra tokių senųjų substruktūrų pėdsakų mūsų Saulės aplinkoje?
Helmi ir kt. (2006), panaudoję Nordström ir kt. (2004) Ženevos–Kopenhagos apžvalgos (ŽKA) katalogą, identifikavo tris naujas koherentines žvaigždžių grupes, kurios pasižymi išskirtiniais kinematiniais parametrais ir gali būti užgalaktinės kilmės.
Šiuo disertacijos darbu siekiama prisidėti prie Galaktikos substruktūrų tyrimų, nustatant detalią cheminę vienos iš Helmi ir kt. identifikuotų žvaigždžių grupių sudėtį. Svarbu išsiaiškinant, ar ŽKA kinematinės grupės žvaigždžių atmosferų cheminė sudėtis skiriasi nuo Galaktikos disko žvaigždžių.
Nustatėme 21 3–osios ŽKA kinematinės grupės bei 6 palyginamųjų plonojo disko žvaigždžių atmosferų pagrindinius parametrus bei 22 cheminių elementų gausas. Kinematinės žvaigždžių grupės deguonies ir α–elementų gausos yra padidėjusios lyginant su plonuoju disku ir yra panašios į storojo disko. Cheminių elementų, daugiausia pagaminamų s–procese, gausos ir geležies grupės elementų gausos yra panašios į to paties metalingumo plonojo disko nykštukių cheminių elementų gausas, o cheminių elementų, daugiausia pagaminamų r–procese, gausos yra padidėjusios lyginant su plonuoju disku.
Panaši cheminė tirtos kinematinės grupės bei storojo Galaktikos disko sudėtis rodo, kad kinematinės žvaigždžių grupės ir storojo disko žvaigždžių... [toliau žr. visą tekstą] / A number of stellar streams, moving and kinematic groups were identified in the Milky Way galaxy. Some of them are suspected to originate from accreted satellites. Can we also find such traces of ancient merger events in the solar neighbourhood? Helmi et al. (2006) identified three new coherent groups of stars in the Geneva-Copenhagen survey (Nordström et al. 2004) and suggested that those might correspond to remains of disrupted satellites.
With the detailed chemical composition analysis of the newly identified kinematic group we aim to contribute to the Galactic substructure studies. The main aim of the study is to perform a high-resolution spectroscopic elemental abundance analysis in stars belonging to one of the newly identified kinematic groups and to compare the results with other stars in the Galactic disc.
We performed the detailed chemical analysis of 21 stars attributed to Group 3 of the Geneva-Copenhagen survey and six comparison Galactic thin disc stars. The main atmospheric parameters and abundances of 22 chemical elements were determined. All programme stars are overabundant in oxygen and α-elements compared with the Galactic thin-disc. This abundance pattern has similar characteristics to those of the Galactic thick disc. The abundances of chemical elements produced predominantly by the r-process are overabundant in comparison with Galactic thin-disc dwarfs of the same metallicity. The abundances of iron-group elements and chemical elements produced mainly... [to full text]
|
78 |
The Stellar Populations and Evolution of Virgo Cluster GalaxiesRoediger, Joel C. 25 August 2009 (has links)
Using a combination of optical and near-infrared photometry, we have studied both the resolved and integrated stellar populations for a sample of Virgo cluster galaxies spanning the full range of galaxian parameters. The derived stellar population properties are compared against galaxy structural and environmental measures to gauge the importance of these factors in establishing galaxy star formation histories and chemical evolution.
Although galaxy colours do not uniquely probe a galaxy's star formation history, meaningful results may be obtained if considered in a relative sense. We find that colour profiles reflect variations in both stellar age and metallicity within galaxies. We also uncover systematic variations in colour gradients, and thus age/metallicity gradients, along the Hubble sequence, such that age and metallicity gradients become increasingly negative toward later Hubble types. However, only weak correlations exist between galaxies' stellar populations and their structure and environment. The correlations we find suggest that the star formation histories of gas-rich galaxies are strongly influenced by gas removal within the cluster, while their chemical evolution is due to a combination of stellar mass-dependent enrichment and outflow retention.
The assembly of gas-poor giant galaxies is consistent with a hierarchical scenario wherein gas-rich mergers dominate by number. Gas-poor dwarfs differ from the giants, however, appearing as the product of environmentally-driven evolution. Spiral galaxies bridge the dwarf-giant gap, whereby merging and gas-stripping signatures are imprinted in their stars. Early-type spirals seem to have fallen into the cluster sooner than the later types, thereby ceasing star formation in their disks at earlier epochs. The bulges of both types, however, appear to have grown via merging. The nature of this merging (minor versus major) remains unknown. Irregular galaxies exhibit signs of a recent gravitational encounter that has redistributed both their stars and gas, the latter of which caused recent star formation. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-08-25 14:12:46.48
|
79 |
Deep radio imaging of the UKIDSS Ultra Deep Survey field : the nature of the faint radio population, and the star-formation history of the UniverseArumugam, Vinodiran January 2013 (has links)
The centrepiece of this thesis is a deep, new, high-resolution 1.4-GHz image covering the United Kingdom Infrared (IR) Telescope IR Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) legacy field. Deep pseudo-continuum observations were made using the Very Large Array, prior to its recent upgrade, in its A, B and DnC configurations. The resulting mosaic has a full-width-at-half-maximum synthesised beam width of ≈ 1.7 arcsec and a point-source sensitivity of ≈ 60μJy (6σ ) across the central 0.6 deg2, while conserving flux from sources of extended emission. The full image covers 1.3 deg2. I also present a catalogue containing over 1,000 radio emitters, having chosen the 6-σ threshold by maximising the number of radio sources with secure optical/near-IR counterparts. Most of the sources in the catalogue (≈ 90 per cent) lie in the sub-mJy flux density regime. Deep, complementary data covering a wide range of wavelengths was used to explore this faint radio population, whose nature remains controversial. It was found that 53 per cent of the sample comprise active galactic nuclei (AGN). AGN dominate at & 0.2mJy and remain a significant population down to 0.1mJy; at lower fluxes – the so-called μJy radio population – star-forming galaxies become dominant. The radio sample presented here was also matched to Hubble Space Telescope imaging of the UDS field (which is part of the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey – CANDELS) to classify the faint radio population morphologically. These classifications were done using the Gini–M20 method. It was found that a low fraction of AGN and SFGs are undergoing interactions and mergers, 33 ± 9 and 13 ± 7 per cent, respectively. The merger fraction does not appear to have evolved significantly since z ∼ 3. This suggests that mergers have played a relatively minor role in the assembly of galaxies and super-massive black holes – certainly less significant than previously thought. Finally, I present a study of cosmic star-formation activity as a function of stellar mass and redshift, exploiting panchromatic stacking. Mid-IR–through–radio images, including new data from Herschel, are stacked at the positions of a K-selected (i.e. an approximately mass-selected) sample in the UDS field. Specific star-formation rates (SSFR, i.e. star-formation rate per stellar mass, or the rate at which a galaxy is converting its gas into stars) were derived from UDS radio luminosities measured here and stellar masses from the literature. The SSFR was found to be poorly correlated with stellar mass; it decreases with decreasing redshift; at a given mass, SSFR rises with redshift. These results indicate that at early epochs, galaxies were forming stars more efficiently and at a higher rate.
|
80 |
Constraints on environmental and secular effects on the chemodynamical evolution of dwarf galaxiesLeaman, Ryan 20 July 2012 (has links)
This thesis presents observations and analysis relating to the understanding of processes that govern the formation and evolution of low mass galactic systems. In particular we have focused on separating out the contribution to the chemical and dynamical evolution of dwarf galaxies due to solely secular (internal) processes compared to external effects from the local environment a galaxy resides in. Our observational data focus on an extremely isolated dwarf galaxy, WLM, which we demonstrate has had a uniquely quiescent tidal history, thereby making it an excellent test case for such a study. With spectroscopic and photometric observations of the resolved stars and neutral gas in WLM we have been able to characterize the chemical, structural and kinematic properties of this gas rich dwarf galaxy. As WLM has not been subject to strong tidal or ram-pressure stripping of its stellar and gaseous populations, we have been able to compare the dynamical evolution and chemical history of WLM to theoretical models which are environment independent. A differential comparison of WLM to more environmentally processed dwarf galaxies in the Local Group has revealed that WLM's structural and dynamical state is far from the idealized picture of dIrrs as thin gas-rich rotating systems. The stellar component of WLM shows equal parts rotation and dispersion, and both the gaseous and stellar structural properties show an intrinsically thick axisymmetric configuration. The time evolution of the random (dispersion) component of the stellar orbital energy shows an increase with stellar age, which we show is consistent with secular processes alone - such as disk heating from giant molecular clouds and dark matter substructure. While the degree to which the thick structural and dynamically hot configuration for WLM is surprising, its chemical properties show remarkably consistent values with other galaxies of the same halo mass. Comparing the spatial chemical trends in WLM with other dwarf galaxies we identify a correlation between the strength of the radial abundance gradients and the angular momentum content of dwarf galaxies in the Local Group. Finally using a large sample of chemical abundance measurements in the literature for dwarf galaxies and star clusters, we demonstrate that their distributions of chemical elements all exhibit a binomial form, and use the statistical properties of the distributions to identify a new metric for differentiating low luminosity stellar systems. We further apply a simple binomial chemical evolution model to describe the self-enrichment and pre-enrichment in the two classes of objects, and suggest how this may be used to place constraints on the formation environments of globular clusters in particular. / Graduate
|
Page generated in 0.3139 seconds