• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and observations of the circumstellar ring system of supernova 1987A with the Hubble Space Telescope

Lo, Man-kit., 盧文傑. January 2006 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
2

Modelling and observations of the circumstellar ring system of supernova 1987A with the Hubble Space Telescope

Lo, Man-kit. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
3

Astronomers and the Hubble space telescope : an historical analysis /

Johnston, Peter J. January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaves 76-81). Also available via the Internet.
4

Cloudy with a chance of water : investigating hot Jupiter exoplanet atmospheres through observation and analysis

Wakeford, Hannah Ruth January 2015 (has links)
Since the discovery of the first exoplanet orbiting a sun-like star in 1995, the fundamental questions as to the formation of our Solar System have met a paradigm shift. The presence of hot Jupiter exoplanets, Jupiter sized worlds rapidly orbiting their host stars, was unlike anything previously seen or predicted. The later discovery of these strange new worlds transiting their stars opened up a new realm of studies into their atmospheres using transit spectroscopy to separate the signals between the star and planetary atmosphere. This thesis investigates the transmission spectral properties of hot Jupiter exoplanets through observations and theoretical analysis from the search for H2O in the near-IR to the signatures of cloud condensates in the IR. Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of transiting hot Jupiters were used to investigate the atmospheric composition over water bands in the near infrared. We put forward a new analysis method to treat the varying systematics seen across transit datasets in a consistent and robust way, in which we marginalise over a grid of possible systematic models used to correct the lightcurves, with each model contributing to the extracted spectrum based on its statistical likelihood. We apply this new method to five previously studied hot Jupiter exoplanet transmission spectra and make direct comparisons between the planetary atmospheres. An apparent dichotomy emerges between two possible sub-classes of hot Jupiter atmospheres with clouds and hazes playing a key role. WFC3 appears to cover a critical wavelength range in exoplanet atmospheres where clouds and hazes potentially obscure the expected molecular signatures in systems where they are found to be obscured in the optical. Using analytical models following Mie theory, we explore the potential atmospheric transmission spectral signatures that would be caused by a variety of cloud condensates in hot Jupiter atmospheres. We find that the observed optical slope representing Rayleigh scattering at high altitudes can constrain the cloud condensate particle size and can be used as a diagnostic for potential condensate features in the IR where almost all condensate absorption features occur. We find that the major transmission spectral absorption features are generated by the vibrational modes of the major diatomic bond pair in each condensate species, which is often seen in the IR at 5-25 microns, and explore the potential for future JWST investigations using MIRI.
5

On the Detection and Characterization of Exomoons Through Survey and Targeted Observations

Teachey, Alexander Macaulay January 2020 (has links)
Exomoons remain amongst the most elusive targets in observational astronomy. Nevertheless, these worlds stand to provide an unprecedented window into the formation and evolution of planetary systems. If the Solar System is any guide, we can expect exomoons will be geologically active and diverse, with the potential for hosting volatiles, atmospheres, and even life. Moreover, a thorough understanding of the population and occurrence rates of exomoons will help to place our own Solar System in a galactic context, speaking to the commonality of our own history. And though there are a variety of known pathways for moon formation, the discovery of exomoons may yet reveal heretofore unanticipated system architectures and defy easy explanation, thereby enriching our theoretical understanding of system formation. In this Dissertation I present a population study of exomoons in the Kepler data, finding an apparent dearth of Galilean-analog satellites orbiting planets between 0.1 and 1 AU. I then present evidence for a large exomoon orbiting Kepler-1625b -- potentially the first ever discovery of a transiting exomoon -- as suggested by a joint analysis of Kepler and Hubble Space Telescope data. The following chapter further investigates a number of alternative hypotheses relating to the candidate moon, though the conclusion that an exomoon best explains the data in hand remains unchanged. Finally, I present the results of an effort to identify candidate exomoon signals in the Kepler data by developing a convolutional neural network trained on O(10⁵) Kepler light curves injected with simulated planet and moon transit signals. The most promising exomoon candidates identified by the neural network are examined in detail, undergoing a full photodynamical model fit and Bayesian model selection. I conclude by discussing the outlook for the moon search, highlighting strategies for future work and myriad unanswered questions that should be pursued in the coming years.
6

Simulink <sup>TM</sup>modules that emulate digital controllers realized with fixed-point or floating-point arithmetic

Robe, Edward D. January 1994 (has links)
No description available.
7

Shedding new light on the enigmatic motions of Jupiter's auroral main emission

Rutala, Matthew J. 10 September 2024 (has links)
Jupiter's aurorae put on a permanent, ever-changing light show more than a thousand times brighter than the Earth's own aurorae. At ultraviolet wavelengths these aurorae are dominated by the ME: discontinuous ovals of curtain-like light partially encircling each of the planet's magnetic poles. The properties of these aurorae are a reflection of processes in Jupiter's magnetosphere, as the two are coupled together by currents flowing along magnetic field lines. By understanding auroral features in the ME, the vast Jovian magnetosphere's complex interactions with the planet can thus be better understood. The evolution of this energetic system has implications for Jupiter's present and past, as well as its place within the Solar System. While Jupiter's large-scale aurorae have been extensively studied, the properties, particularly motions, of small-scale auroral features represent a comparatively unexplored route to gain deeper understanding of this system. Here, the motions of these auroral features are characterized and related back to the physical processes in Jupiter's magnetosphere and ionosphere. First, a survey of auroral feature motions in Jupiter's ME is created based on Hubble Space Telescope observations. A dichotomy in auroral motion is found: features near dawn remain fixed in local time significantly more than features elsewhere. This finding gives context for Jupiter's dawn storms-- rare, enigmatic auroral phenomena noted for their fixedness, brightness, and appearance only at local dawn. Next, the ME is measured on smaller scales and compared with in-situ measurements of magnetospheric plasma flow from the Galileo spacecraft to estimate the magnetospheric and ionospheric properties associated with fixed auroral features. Finally, these properties are used to inform a self-consistent model of the currents generating the ME. Ionospheric conductance-- the ease with which currents flow through the ionosphere-- is varied to generate models which best match the auroral observations. Altogether, a coherent description of ME auroral features and their associated physical processes emerges. Increased conductance is found to correspond with both auroral emissions and the acceleration of magnetospheric plasma. The conductance, which is spatially variable but fixed in local time on average, is proposed to explain the motions of small-scale ultraviolet Jovian auroral forms.
8

Análise de campos profundos da LMC imageados com o HST

Castro, Rodrigo January 2001 (has links)
Apresentamos fotometria profunda (V ~ 25,5) nas bandas V e I obtidas com a Wide Field and Planetary Camera 2 a bordo do telesc opio espacial Hubble para 7 campos distantes ~5º do centro da Grande Nuvem de Magalhães. Ajustamos isócronas aos diagramas cor-magnitude a fim de identficar diferentes populaões estelares nestes campos. Uma população velha (τ > 10¹º anos) foi encontrada em todos os campos. Alguns eventos de elevada formação estelar, com idades entre 2 x 109 e 4 x 109 anos, foram também encontrados em alguns campos localizados na região N/NO. Funções de luminosidade de estrelas de baixa massa (m ≤ 1; 1msol) foram obtidas para todos os campos. Aparentemente não há diferenças na mistura de populações entre os campos como sugerido através do teste Kolmogorov-Smirnov aplicados as funções de luminosidade. Finalmente, derivamos perfis de densidade para estrelas velhas e de idade intermediária. O primeiro apresenta uma inclinação levemente maior quando comparado com o último.
9

Properties of the first galaxies

McLeod, Derek Johannes January 2017 (has links)
With the Hubble Space Telescope and its near-infrared capabilities, it is now possible to probe deep into the epoch of reionization, improving our understanding of galaxy evolution through cosmic history. Whether it is via colour-selection or fitting the spectral energy distribution, it has now become routine to amass large samples of galaxies as distant as redshift z = 8, with the current frontier of observations at z = 9 - 10. The new Hubble Frontier Fields (HFF) programme provides the potential to study the most distant, intrinsically faint background galaxies through the gravitational lensing provided by a foreground galaxy cluster. This thesis presents a study of the galaxy population at z = 9 - 10 that exploits this phenomenon. In an initial search of the first two HFF cluster+parallel pointings, Abell 2744 and MACS J0416.1-240, we unveil twelve candidate high-redshift galaxies at 8:4 < z < 9:5, and are thus able to place constraints on the galaxy UV luminosity function at z = 9. For this study, we employ the "blank-field" method, whereby we confine attention to only the homogeneously deep, relatively low-magnification regions of the imaging. We are able to demonstrate evidence for a smooth decline in UV luminosity density between z ≃ 8 and z ≃ 9, in contrast to reports in the recent literature of a steep drop-off at these redshifts. We extend this study to include the new MACS J0717.5+3745 and MACS J1149+2223 cluster+parallel pointings, and supplement the search for z ≃ 9-10 galaxies with twenty CLASH cluster pointings. From a search over an area ≃ 130 sq. arcmin, we are able to present 33 galaxy candidates with photometric redshift solutions in the range 8:4 < zphot < 11:2. Our new results reinforce the argument for a smoothly-evolving LF between z ≃ 8 and z ≃ 9, which can be equally well modelled by a factor ≃ 2 drop in Φ* or a dimming of ≃ 0:5 mag in M*. We also find evidence that this smooth decline in the UV luminosity function, and hence UV luminosity density, continues to z ≃ 10. As well as considering the galaxy population at z = 9 - 10, this thesis presents a study of the stellar populations of galaxies at z ≥ 5. We are able to extend the luminosity baseline and measure the colour-magnitude relation at z = 5 - 8, through a combination of probing intrinsically faint galaxies behind cluster fields, in conjunction with both ultra-deep, pencil beam imaging such as the Hubble Ultra Deep Field (HUDF) and wider, shallower imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This allows us to make inferences about the underlying stellar populations of galaxies at these epochs, and provides a unique insight into the colours of intrinsically faint, lensed galaxies as faint as M1500 ~ -14. We find that the data is consistent with an essentially unchanged average UV slope (β) for a given luminosity across the redshift range z = 5-8. We also find that the data favours a mild flattening of the colour-magnitude relation with redshift between z = 5 and z = 8.
10

Morphology and dynamics of the Io UV footprint/Morphologie et dynamique de l'empreinte aurorale UV d'Io

Bonfond, Bertrand 26 October 2009 (has links)
The Io UV footprint (IFP) is one of the most spectacular signatures of the Io-Jupiter interaction. It consists of several auroral spots and an extended tail which are located close to the feet of the magnetic field lines passing through Io in each hemisphere. The purpose of the present study is to demonstrate that a careful analysis of the Io UV footprint based on observations acquired with the STIS and ACS high resolution and high sensitivity FUV cameras on board the Hubble Space Telescope can provide us with essential information on the ongoing physical processes. The thesis is organized around basic questions: What is the Io footprint?, Where is the Io footprint?, How high is the Io footprint?, How big is the Io footprint? and finally: How bright is the Io footprint? The answers to these questions have profound implications for the understanding of the phenomenon. Among the most important results of this work is the unexpected finding of a faint auroral spot appearing upstream of the main Io spot in one hemisphere while only downstream spots are seen in the opposite hemisphere. The detailed study of the evolution of the inter-spot distances puts previous models describing the footprint morphology under question. We propose a new interpretation which involves that some spots are caused by electrons accelerated away from the planet along the field lines in one hemisphere, crossing the equatorial plane in the form of electron beams and precipitating in the opposite hemisphere, creating the so-called Trans-hemispheric Electron Beam (TEB) spots. The information provided by the position of the satellite footprints is not restricted to the interaction between the moon and the Jovian magnetosphere. The analysis of the footpaths of Io, Europa and Ganymede helped us to further constrain the magnetic field models, notably through the identification of a large magnetic anomaly in the northern hemisphere. Additionally, the study of the speed of the Io footprint along its reference contour suggests that a second anomaly regions may also exist in the North. In this work, we present a new and direct method to measure the altitude of the different footprint features. The main spot and the tail emissions have a peak altitude of 900 km while the peak altitude of the Trans-hemispheric Electron Beam spot is 700 km. These results suggest that the main spot and tail emissions are caused by the precipitation of electrons with a mean energy around 1 keV, far lower than the 55 keV value previously derived from spectral measurements. The vertical extent of these emissions is surprisingly broad (scale height ~400 km) and is best fitted with an incoming kappa electron energy distribution (spectral index ~2.3). This suggests that the electron acceleration is supplied by processes related to inertial Alfvén waves rather than by quasi-static potentials as proposed by some theoretical models. The size of the main footprint spot is carefully estimated on a much larger image sample than before: its length along the footpath is ~900 km while its width perpendicular to the footpath is <200 km. Larger lengths are sometimes observed but in that case, they are attributed to the mix of individual spots. The spot length is larger than the projected diameter of Io around the magnetic field lines but is consistent with recent simulations. As far as the Io footprint brightness is concerned, variations on two timescales have been studied. On timescales of minutes, systematic brightness fluctuation on the order of 30% (and going up to 50%) are observed. Additionally, cases of simultaneous variations of the main and the TEB spots are reported, which suggests that the process that triggers these fast variations is located close to the planet. Variations of the main spot brightness with the System III longitude of Io are also analyzed. Our new measurement method fully considering the multi-spot structure of the IFP and the real geometry of the observations provides more accurate estimates for the precipitating energy flux (between 100 and 500 mW/m for the main spot). The main spot brightness peaks at 110° and 290° longitude, which could be attributed either to an enhanced interaction strength when Io is near the dense torus center or to spots merging which is also observed to occur in these sector. Nevertheless, strong North-South asymmetries are also observed, which suggests that the surface magnetic field strength also influences the spots brightness. ---------------------------------------------------------------------- L'empreinte aurorale d'Io est l'une des signatures les plus impressionnantes de l'interaction Io-Jupiter. Présente dans chaque hémisphère, elle se situe à proximité des pieds des lignes de champ magnétique qui interceptent Io et se compose de plusieurs taches suivies d'une longue trainée. Cette étude vise à démontrer qu'une analyse minutieuse de l'empreinte UV d'Io basée sur les observations des instruments STIS et ACS du Télescope Spatial Hubble peut apporter des informations cruciales sur les processus physiques qui sont en jeu. Cette thèse est organisée autour de questions relativement basiques: Qu'est-ce que l'empreinte d'Io?, Où se trouve-t-elle?, A quelle altitude se trouve-t-elle?, Quelle est sa taille? et enfin Quelle est sa brillance?. Les réponses à ces questions ont de profondes implications pour la compréhension du phénomène. Parmi les résultats principaux de ce travail, il y a la découverte inattendue d'une faible tache aurorale apparaissant en amont de la tache principale dans un hémisphère alors que les seules taches observées dans l'hémisphère opposé sont situées en aval. L'étude détaillée de la distance inter-taches remet en question les précédents modèles décrivant la morphologie de l'empreinte. Nous proposons ici une nouvelle interprétation de certaines de ces taches: elles seraient causées par des électrons initialement accélérés le long des lignes de champ dans la direction opposée à Jupiter, qui ensuite traverseraient le plan équatorial sous la forme de faisceaux d'électrons et qui précipiteraient finalement dans l'hémisphère opposé en générant la tache du Faisceau d'Electrons Trans-hemisphérique (FET). Les informations fournies par la position des empreintes de satellites ne se limitent pas à l'interaction entre Io et la magnétosphère de Jupiter. L'analyse des contours parcourus par les empreintes d'Io, d'Europe et de Ganymède permet de mieux contraindre les modèles de champ magnétique joviens, entre autre à travers l'identification d'une importante anomalie magnétique dans l'hémisphère nord. De plus, l'étude de la vitesse de l'empreinte d'Io le long du contour de référence suggère qu'elle pourrait être accompagnée d'une deuxième anomalie dans cet hémisphère. Dans cette étude, nous présentons une méthode directe pour mesurer l'altitude des différentes sous-structures qui forment l'empreinte. Le pic d'émissions de la tache principale et de la trainée est situé à 900 km d'altitude alors que celui de la tache FET est à 700 km. Ces résultats suggèrent que la tache principale et la trainée sont la conséquence de la précipitation d'électrons ayant une énergie moyenne d'approximativement 1 keV, une valeur largement inférieure aux 55 keV déduits à partir de précédentes mesures spectrales. L'extension verticale de ces émissions est étonnamment large (hauteur d'échelle: ~400 km) et la distribution d'énergie des électrons incidents qui reproduit au mieux les observations est une distribution kappa d'indice spectral ~2.3. Cela suggère que l'accélération des électrons est liée à des ondes d'Alfvén inertielles plutôt qu'aux potentiels quasi-statiques proposés par certains modèles théoriques. La taille de la tache principale a été mesurée sur un ensemble d'images beaucoup plus étendu qu'auparavant: sa longueur le long du contour est de ~900 km alors que sa largeur telle que mesurée perpendiculairement à celui-ci est de <200 km. Des longueurs plus importants sont parfois observées mais elles résultent de la superposition partielle de plusieurs taches individuelles. La longueur des taches est plus grande que la projection du diamètre d'Io le long des lignes de champ, ce qui était prévu par des simulations récentes. En ce qui concerne la brillance des taches, deux échelles de temps ont été étudiées en particulier. A l'échelle de la minute, nous avons mis en évidence des fluctuations de l'ordre de 30% de la brillance moyenne et pouvant atteindre jusqu'à 50 % de celle-ci. Dans certains cas, on observe des variations corrélées de la tache principale et de la tache FET, ce qui suggère que le processus qui induit ces variations rapides se situe près de la surface de Jupiter. Les variations de la brillance de la tache principale en fonction de la longitude Système III d'Io ont également été analysées. Notre nouvelle méthode de mesure prend pleinement en compte la géométrie de l'observation ainsi que le fait que l'empreinte est composée de différentes taches, ce qui permet une estimation plus précise du flux d'énergie incident (entre 100 et 500 mW/m pour la tache principale). La brillance de la tache principale possède deux maxima, un à 110° et un autre à 290° de longitude. Ces augmentations de brillance peuvent avoir deux origines: soit elles sont dues à l'augmentation de l'intensité de l'interaction entre Io et le plasma quand Io est proche du centre du tore, soit elles sont liées à la superposition des taches principales et FET qui se produit également dans ces secteurs. Néanmoins, de fortes asymétries Nord-Sud sont aussi observées, ce qui semble indiquer que l'intensité du champ magnétique de surface joue aussi un rôle en ce qui concerne la brillance des spots.

Page generated in 0.0693 seconds