• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • Tagged with
  • 48
  • 48
  • 48
  • 20
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Computational Analysis of Aqueous Drug Solubility – Influence of the Solid State

Wassvik, Carola January 2006 (has links)
<p>Aqueous solubility is a key parameter influencing the bioavailability of drugs and drug candidates. In this thesis computational models for the prediction of aqueous drug solubility were explored. High quality experimental solubility data for drugs were generated using a standardised protocol and models were developed using multivariate data analysis tools and calculated molecular descriptors. In addition, structural features associated with either solid-state limited or solvation limited solubility of drugs were identified.</p><p>Solvation, as represented by the octanol-water partition coefficient (log<i>P</i>), was found to be the dominant factor limiting the solubility of drugs, with solid-state properties being the second most important limiting factor.</p><p>The relationship between the chemical structure of drugs and the strength of their crystal lattice was studied for a dataset displaying log<i>P</i>-independent solubility. Large, rigid and flat molecules with an extended ring-structure and a large number of conjugated π-bonds were found to be more likely to have their solubility limited by a strong crystal lattice than were small, spherically shaped molecules with flexible side-chains.</p><p>Finally, the relationship between chemical structure and drug solvation was studied using computer simulated values of the free energy of hydration. Drugs exhibiting poor hydration were found to be large and flexible, to have low polarisability and few hydrogen bond acceptors and donors.</p><p>The relationship between the structural features of drugs and their aqueous solubility discussed in this thesis provide new rules-of-thumb that could guide decision-making in early drug discovery.</p>
42

Identification and Variation of some Functionality Related Characteristics of Pharmaceutically Relevant Solid Materials and their Effect on Product Performance

Fichtner, Frauke January 2007 (has links)
<p>The aim of this thesis was to identify some functionality related characteristics of pharmaceutically relevant solid materials and to study the effect of their variation on processing behaviour and product performance. For this purpose, particles with different characteristics were prepared under a variety of conditions by crystal agglomeration, wet granulation and spray drying. The effect of particle size distribution on the evolution of the tablet microstructure during and after compression was investigated. The compression behaviour of particles with different nominal strength and degrees of agglomeration was studied and the influence of the surfactant concentration of amorphous particles on the compression behaviour was examined. The response of the powders to compression was described with the help of various techniques characterising the microstructure and tensile strength of the tablets produced. </p><p>Furthermore, a method suitable for observing drug release from single matrix granules was developed and used to study the effect of granule porosity and compaction pressure on the drug release process. </p><p>The particle size distribution did not influence the evolution of the tablet porosity or the tensile strength during compression, but it could have an effect on the evolution of the tablet microstructure during short-term storage, depending on the instability mechanism. The compression behaviour of particles prepared by crystal agglomeration and wet granulation was dependent on their degree of agglomeration and their failure strength. For particles with similar solid state properties and compression behaviour, the surface energy appears to have an effect on the bonding strength of adsorption bonds acting at interparticulate junctions. Using the method developed to observe the drug release from single matrix granules, reproducible data was obtained enabling the drug release process to be characterised. Depending on the type of matrix and the compaction pressure, the drug release rate could be enhanced or retarded. </p>
43

Computational Analysis of Aqueous Drug Solubility – Influence of the Solid State

Wassvik, Carola January 2006 (has links)
Aqueous solubility is a key parameter influencing the bioavailability of drugs and drug candidates. In this thesis computational models for the prediction of aqueous drug solubility were explored. High quality experimental solubility data for drugs were generated using a standardised protocol and models were developed using multivariate data analysis tools and calculated molecular descriptors. In addition, structural features associated with either solid-state limited or solvation limited solubility of drugs were identified. Solvation, as represented by the octanol-water partition coefficient (logP), was found to be the dominant factor limiting the solubility of drugs, with solid-state properties being the second most important limiting factor. The relationship between the chemical structure of drugs and the strength of their crystal lattice was studied for a dataset displaying logP-independent solubility. Large, rigid and flat molecules with an extended ring-structure and a large number of conjugated π-bonds were found to be more likely to have their solubility limited by a strong crystal lattice than were small, spherically shaped molecules with flexible side-chains. Finally, the relationship between chemical structure and drug solvation was studied using computer simulated values of the free energy of hydration. Drugs exhibiting poor hydration were found to be large and flexible, to have low polarisability and few hydrogen bond acceptors and donors. The relationship between the structural features of drugs and their aqueous solubility discussed in this thesis provide new rules-of-thumb that could guide decision-making in early drug discovery.
44

Identification and Variation of some Functionality Related Characteristics of Pharmaceutically Relevant Solid Materials and their Effect on Product Performance

Fichtner, Frauke January 2007 (has links)
The aim of this thesis was to identify some functionality related characteristics of pharmaceutically relevant solid materials and to study the effect of their variation on processing behaviour and product performance. For this purpose, particles with different characteristics were prepared under a variety of conditions by crystal agglomeration, wet granulation and spray drying. The effect of particle size distribution on the evolution of the tablet microstructure during and after compression was investigated. The compression behaviour of particles with different nominal strength and degrees of agglomeration was studied and the influence of the surfactant concentration of amorphous particles on the compression behaviour was examined. The response of the powders to compression was described with the help of various techniques characterising the microstructure and tensile strength of the tablets produced. Furthermore, a method suitable for observing drug release from single matrix granules was developed and used to study the effect of granule porosity and compaction pressure on the drug release process. The particle size distribution did not influence the evolution of the tablet porosity or the tensile strength during compression, but it could have an effect on the evolution of the tablet microstructure during short-term storage, depending on the instability mechanism. The compression behaviour of particles prepared by crystal agglomeration and wet granulation was dependent on their degree of agglomeration and their failure strength. For particles with similar solid state properties and compression behaviour, the surface energy appears to have an effect on the bonding strength of adsorption bonds acting at interparticulate junctions. Using the method developed to observe the drug release from single matrix granules, reproducible data was obtained enabling the drug release process to be characterised. Depending on the type of matrix and the compaction pressure, the drug release rate could be enhanced or retarded.
45

ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and Disposition

Matsson, Pär January 2007 (has links)
<p>Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. </p><p>The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. </p><p>To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.</p>
46

ATP-Binding Cassette Efflux Transporters and Passive Membrane Permeability in Drug Absorption and Disposition

Matsson, Pär January 2007 (has links)
Transport into and across the cells of the human body is a prerequisite for the pharmacological action of drugs. Passive membrane permeability and active transport mechanisms are major determinants of the intestinal absorption of drugs, as well as of the distribution to target tissues and the subsequent metabolism and excretion from the body. In this thesis, the role of ATP-binding cassette (ABC) transporters and passive permeability on drug absorption and disposition was investigated. Particular emphasis was placed on defining the molecular properties important for these transport mechanisms. The influence of different transport pathways on predictions of intestinal drug absorption was investigated using experimental models of different complexity. Experimental models that include the paracellular pathway gave improved predictions of intestinal drug absorption, especially for incompletely absorbed drugs. Further, the inhibition of the ABC transporters breast cancer resistance protein (BCRP/ABCG2) and multidrug-resistance associated protein 2 (MRP2/ABCC2) was experimentally investigated using structurally diverse datasets that were representative of orally administered drugs. A large number of previously unknown inhibitors were identified among registered drugs, but their clinical relevance for drug-drug interactions and drug-induced toxicity remains to be determined. The majority of the inhibitors affected all three major ABC transporters BCRP, MRP2 and P-glycoprotein (P gp/ABCB1), and these multi-specific inhibitors were found to be enriched in highly lipophilic weak bases. To summarize, the present work has led to an increased knowledge of the molecular features of importance for ABC transporter inhibition and passive membrane permeability. Previously unknown ABC transporter inhibitors were identified and predictive computational models were developed for the different drug transport mechanisms. These could be valuable tools to assist in the prioritization of experimental efforts in early drug discovery.
47

In vitro and in silico prediction of drug-drug interactions with transport proteins

Ahlin, Gustav January 2009 (has links)
Drug transport across cells and cell membranes in the human body is crucial for the pharmacological effect of drugs. Active transport governed by transport proteins plays an important role in this process. A vast number of transport proteins with a wide tissue distribution have been identified during the last 15 years. Several important examples of their role in drug disposition and drug-drug interactions have been described to date. Investigation of drug-drug interactions at the transport protein level are therefore of increasing interest to the academic, industrial and regulatory research communities. The gene expression of transport proteins involved in drug transport was investigated in the jejunum, liver, kidney and colon to better understand their influence on the ADMET properties of drugs. In addition, the gene and protein expression of transport proteins in cell lines, widely used for predictions of drug transport and metabolism, was examined. The substrate and inhibitor heterogeneity of many transport proteins makes it difficult to foresee whether the transport proteins will cause drug-drug interactions. Therefore, in vitro assays for OCT1 and OATP1B1, among the highest expressed transport proteins in human liver, were developed to allow investigation of the inhibitory patterns of these proteins. These assays were used to investigate two data sets, consisting of 191 and 135 registered drugs and drug-like molecules for the inhibition of OCT1 and OATP1B1, respectively. Numerous new inhibitors of the transport proteins were identified in the data sets and the properties governing inhibition were determined. Further, antidepressant drugs and statins displayed strong inhibition of OCT1 and OATP1B1, respectively. The inhibition data was used to develop predictive in silico models for each of the two transport proteins. The highly polymorphic nature of some transport proteins has been shown to affect drug response and may lead to an increased risk of drug-drug interactions, and therefore, the OCT1 in vitro assay was used to study the effect of common genetic variants of OCT1 on drug inhibition and drug-drug interactions. The results indicated that OCT1 variants with reduced function were more susceptible to inhibition. Further, a drug-drug interaction of potential clinical significance in the genetic OCT1 variant M420del was proposed. In summary, gene expression of transport proteins was investigated in human tissues and cell lines. In vitro assays for two of the highest expressed liver transport proteins were used to identify previously unknown SLC transport protein inhibitors and to develop predictive in silico models, which may detect previously known drug-drug interactions and enable new ones to be identified at the transport protein level. In addition, the effect of genetic variation on inhibition of the OCT1 was investigated.
48

Olfactory Transfer of Analgesic Drugs After Nasal Administration

Espefält Westin, Ulrika January 2007 (has links)
Nasal administration of analgesics for achieving rapid pain relief is currently a topic of great interest. The blood-brain barrier (BBB) restricts access to the central nervous system (CNS) for several central-acting drugs, such as morphine and dihydroergotamine, which results in a substantial effect delay. Evidence for the olfactory transfer of drugs from the nasal cavity to the CNS after nasal administration, bypassing the BBB, is available for both animals and humans. The aims of this thesis were to study the olfactory transfer of morphine to the CNS after nasal administration, and to compare the nasal transport of analgesic drugs across nasal respiratory and olfactory mucosa. In vivo studies in rodents demonstrated that morphine is transferred via olfactory pathways to the olfactory bulbs and the longitudinal fissure of the brain after nasal administration. Further, olfactory transfer of morphine significantly contributed to the early high morphine brain hemisphere concentrations seen after nasal administration to rats. Olfactory transfer was tracked by collecting and analysing brain tissue and blood samples after right-sided nasal administration and comparing the results to the situation after i.v. administration. The olfactory transfer was also visualised by brain autoradiography. In vitro studies indicated that the olfactory mucosa should not be a major barrier to the olfactory transfer of dihydroergotamine or morphine, since transport of these drugs was no more restricted across the olfactory mucosa than across the nasal respiratory mucosa. The in vitro studies were performed using the horizontal Ussing chamber method. This method was further developed to enable comparison of drug transport across nasal respiratory and olfactory mucosa which cannot be achieved in vivo. In conclusion, these analgesic drugs showed potential for olfactory transfer, and access to the CNS by this route should be further investigated in humans, especially for the drugs with central effects that are currently under development for nasal administration.

Page generated in 0.0703 seconds