• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

H2-wavelet Galerkin BEM and its application to the radiosity equation

Kähler, Ulf January 2007 (has links)
Zugl.: Chemnitz, Techn. Univ., Diss., 2007 / Hergestellt on demand
2

Fully Discrete Wavelet Galerkin Schemes

Harbrecht, Helmut, Konik, Michael, Schneider, Reinhold 04 April 2006 (has links)
The present paper is intended to give a survey of the developments of the wavelet Galerkin boundary element method. Using appropriate wavelet bases for the discretization of boundary integral operators yields numerically sparse system matrices. These system matrices can be compressed to O(N_j) nonzero matrix entries without loss of accuracy of the underlying Galerkin scheme. Herein, O(N_j) denotes the number of unknowns. As we show in the present paper, the assembly of the compressed system matrix can be performed within optimal complexity. By numerical experiments we provide examples which corroborate the theory.
3

Wavelet based fast solution of boundary integral equations

Harbrecht, Helmut, Schneider, Reinhold 11 April 2006 (has links)
This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators which yields quasi-sparse system matrices. These matrices can be compressed such that the complexity for solving a boundary integral equation scales linearly with the number of unknowns without compromising the accuracy of the underlying Galerkin scheme. Based on the wavelet Galerkin scheme we present also an adaptive algorithm. By numerical experiments we provide results which demonstrate the performance of our algorithm.

Page generated in 0.0409 seconds