Spelling suggestions: "subject:"applyingwavelet method"" "subject:"multiwavelet method""
1 |
Resolução numérica de EDPs utilizando ondaletas harmônicas / Numerical resolution of partial differential equations using harmonic waveletsPedro da Silva Peixoto 16 July 2009 (has links)
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas, custo computacional ótimo e ainda a possibilidade de se obter espectralmente informações sobre a localização da frente de precipitação. / Numerical methods to solve partial differential equations based on wavelets have been developed in the last two decades, but there is a lack of studies on their computational characteristics. In this study a Galerkin spectral method using harmonic wavelets base has been thoroughly analyzed. We performed a review on the mathematics of harmonic wavelets, that showed a great similarity with Fourier basis. Several numerical experiments were made. Analyzing the use of the Galerkin method, with harmonic wavelets, on linear and non linear transport equations, we achieved good approximations in respect to the expected solution. The computational cost resulted to be similar to the same method with Fourier basis. On the other hand, employing harmonic wavelets we were able to obtain local information of the solution by simple inspection of the spectral coeffcients. We also analyzed a pseudo-spectral method based on harmonic wavelets for the non linear equations, resulting in a great improvement in efficiency. Looking towards using the locality propriety of harmonic wavelets, we tested the Galerkin method on a precipitation front propagation model. The method resulted in good approximations to the expected solution, optimal computational cost and the possibility of obtaining information on the locality of the precipitation fronts spectrally.
|
2 |
Resolução numérica de EDPs utilizando ondaletas harmônicas / Numerical resolution of partial differential equations using harmonic waveletsPeixoto, Pedro da Silva 16 July 2009 (has links)
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas, custo computacional ótimo e ainda a possibilidade de se obter espectralmente informações sobre a localização da frente de precipitação. / Numerical methods to solve partial differential equations based on wavelets have been developed in the last two decades, but there is a lack of studies on their computational characteristics. In this study a Galerkin spectral method using harmonic wavelets base has been thoroughly analyzed. We performed a review on the mathematics of harmonic wavelets, that showed a great similarity with Fourier basis. Several numerical experiments were made. Analyzing the use of the Galerkin method, with harmonic wavelets, on linear and non linear transport equations, we achieved good approximations in respect to the expected solution. The computational cost resulted to be similar to the same method with Fourier basis. On the other hand, employing harmonic wavelets we were able to obtain local information of the solution by simple inspection of the spectral coeffcients. We also analyzed a pseudo-spectral method based on harmonic wavelets for the non linear equations, resulting in a great improvement in efficiency. Looking towards using the locality propriety of harmonic wavelets, we tested the Galerkin method on a precipitation front propagation model. The method resulted in good approximations to the expected solution, optimal computational cost and the possibility of obtaining information on the locality of the precipitation fronts spectrally.
|
Page generated in 0.0657 seconds