• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical modelling of nonlinear internal waves in a rotating fluid

Alias, Azwani B. January 2014 (has links)
Large amplitude internal solitary waves in the coastal ocean are commonly modelled with the Korteweg-de Vries (KdV) equation or a closely related evolution equation. The characteristic feature of these models is the solitary wave solution, and it is well documented that these provide the basic paradigm for the interpretation of oceanic observations. However, often internal waves in the ocean survive for several inertial periods, and in that case, the KdV equation is supplemented with a linear non-local term representing the effects of background rotation, commonly called the Ostrovsky equation. This equation does not support solitary wave solutions, and instead a solitary-like initial condition collapses due to radiation of inertia-gravity waves, with instead the long-time outcome typically being an unsteady nonlinear wave packet. The KdV equation and the Ostrovsky equation are formulated on the assumption that only a single vertical mode is used. In this thesis we consider the situation when two vertical modes are used, due to a near-resonance between their respective linear long wave phase speeds. This phenomenon can be described by a pair of coupled Ostrovsky equations, which is derived asymptotically from the full set of Euler equations and solved numerically using a pseudo-spectral method. The derivation of a system of coupled Ostrovsky equations is an important extension of coupled KdV equations on the one hand, and a single Ostrovsky equation on the other hand. The analytic structure and dynamical behaviour of the system have been elucidated in two main cases. The first case is when there is no background shear flow, while the second case is when the background state contains current shear, and both cases lead to new solution types with rich dynamical behaviour. We demonstrate that solitary-like initial conditions typically collapse into two unsteady nonlinear wave packets, propagating with distinct speeds corresponding to the extremum value in the group velocities. However, a background shear flow allows for several types of dynamical behaviour, supporting both unsteady and steady nonlinear wave packets, propagating with the speeds which can be predicted from the linear dispersion relation. In addition, in some cases secondary wave packets are formed associated with certain resonances which also can be identified from the linear dispersion relation. Finally, as a by-product of this study it was shown that a background shear flow can lead to the anomalous version of the single Ostrovsky equation, which supports a steady wave packet.
2

Resolução numérica de EDPs utilizando ondaletas harmônicas / Numerical resolution of partial differential equations using harmonic wavelets

Pedro da Silva Peixoto 16 July 2009 (has links)
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas, custo computacional ótimo e ainda a possibilidade de se obter espectralmente informações sobre a localização da frente de precipitação. / Numerical methods to solve partial differential equations based on wavelets have been developed in the last two decades, but there is a lack of studies on their computational characteristics. In this study a Galerkin spectral method using harmonic wavelets base has been thoroughly analyzed. We performed a review on the mathematics of harmonic wavelets, that showed a great similarity with Fourier basis. Several numerical experiments were made. Analyzing the use of the Galerkin method, with harmonic wavelets, on linear and non linear transport equations, we achieved good approximations in respect to the expected solution. The computational cost resulted to be similar to the same method with Fourier basis. On the other hand, employing harmonic wavelets we were able to obtain local information of the solution by simple inspection of the spectral coeffcients. We also analyzed a pseudo-spectral method based on harmonic wavelets for the non linear equations, resulting in a great improvement in efficiency. Looking towards using the locality propriety of harmonic wavelets, we tested the Galerkin method on a precipitation front propagation model. The method resulted in good approximations to the expected solution, optimal computational cost and the possibility of obtaining information on the locality of the precipitation fronts spectrally.
3

Resolução numérica de EDPs utilizando ondaletas harmônicas / Numerical resolution of partial differential equations using harmonic wavelets

Peixoto, Pedro da Silva 16 July 2009 (has links)
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas, custo computacional ótimo e ainda a possibilidade de se obter espectralmente informações sobre a localização da frente de precipitação. / Numerical methods to solve partial differential equations based on wavelets have been developed in the last two decades, but there is a lack of studies on their computational characteristics. In this study a Galerkin spectral method using harmonic wavelets base has been thoroughly analyzed. We performed a review on the mathematics of harmonic wavelets, that showed a great similarity with Fourier basis. Several numerical experiments were made. Analyzing the use of the Galerkin method, with harmonic wavelets, on linear and non linear transport equations, we achieved good approximations in respect to the expected solution. The computational cost resulted to be similar to the same method with Fourier basis. On the other hand, employing harmonic wavelets we were able to obtain local information of the solution by simple inspection of the spectral coeffcients. We also analyzed a pseudo-spectral method based on harmonic wavelets for the non linear equations, resulting in a great improvement in efficiency. Looking towards using the locality propriety of harmonic wavelets, we tested the Galerkin method on a precipitation front propagation model. The method resulted in good approximations to the expected solution, optimal computational cost and the possibility of obtaining information on the locality of the precipitation fronts spectrally.
4

Modelagem matemática de esteiras em desenvolvimento temporal utilizando o método pseudoespectral de Fourier

Jacob, Bruno Tadeu Pereira 13 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work is dedicated to perform the mathematical modeling and DNS and LES simulations of a three-dimensional, temporally evolving incompressible plane wake are performed, seeking to evidence differences in stability, transition and onset of both coherent and small scale structures, when the flow is subjected to random perturbations of different amplitudes. The perturbations are generated using the Random-Flow-Generator (RFG) technique, being imposed to the flow as initial conditions. The Navier-Stokes equations are solved in a prismatic domain, with periodic boundary conditions in all directions, using Fourier pseudospectral method. The invariants of the velocity gradient tensor, Q and R, are analyzed for random perturbations with magnitudes 10−3, 10−4 and 10−5, showing the onset of their characteristic teardrop correlation map. Moreover, maps of the second and third invariants of the rate-of-strain tensor, QS and RS, are shown, in order to evidence the differences in local flow strain and topological characteristics of the dissipation of kinetic energy. Isosurface plots of Q and QW, as well as vorticity contours are shown, allowing visual identification of the coherent structures and confirming patterns predicted by the invariant maps. / O presente trabalho se dedica a modelagem matemática e a simulações numéricas DNS e LES de uma esteira tridimensional, incompressível, em desenvolvimento temporal, buscando evidenciar diferenças na estabilidade, transição e no desenvolvimento de estruturas coerentes e de pequena escala, quando o escoamento é submetido a perturbações randômicas de diferentes amplitudes. As perturbações são geradas utilizando-se a técnica Random Flow Generator (RFG), sendo sobrepostas à condição inicial do escoamento. As equações de Navier-Stokes são resolvidas em um domínio prismático, com condições de contorno periódicas em todas as direções, utilizando-se o método pseudoespectral de Fourier. Os invariantes do tensor gradiente de velocidade, Q e R, são analisados para perturbações de magnitude 10−3, 10−4 and 10−5, mostrando a formação de uma correlação no formato de gota, característica da resolução das equações de Navier-Stokes. Além disso, são apresentados mapas do segundo e terceiro invariante do tensor taxa de deformação, QS e RS, a fim de evidenciar as diferenças locais no escoamento e as características topológicas na taxa de dissipação de energia cinética. Isosuperfícies de Q e QW, bem como contornos de vorticidade são apresentados, possibilitando a identificação visual das estruturas coerentes, e confirmando os padrões de estruturas previstos pelos mapas de invariância. / Mestre em Engenharia Mecânica
5

Simulação de escoamentos não-periódicos utilizando as metodologias pseudo-espectral e da fronteira imersa acopladas / Simulation of non-periodics flows using the fourier pseudo-spectral and immersed boundary methods

Mariano, Felipe Pamplona 06 March 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Modern engineering increasingly requires the comprehension of phenomena related to combustion, aeroacustics, turbulence transition, among others. For these purposes the Computational Fluids Dynamics (CFD) requires the used high order methods. One of these methods is the Fourier pseudo-spectral method, that provides an excellent numerical accuracy, and with the use of the Fast Fourier Transform algorithm (FFT), it presents a low computational cost in comparison to anothers high-order methods. Another important issue is the projection method of the pression term, which does not require the pressure computation from the Navier-Stokes equations. The procedure to calculate the pression field is usually the most onerous in classical methodologies. Nevertheless, the pseudo-spectral method can be only applied to periodic boundary flows, thus limiting its use. Aiming to solve this restriction, a new methodology is proposed at the present work, which has the objective of simulating nonperiodic flows using the Fourier pseudo-spectral method. For this purpose the immersed boundary method, that represents the boundary conditions through a force field imposed at Navier-Stokes equations is used. As a test to this new methodology, a classic problem of Computational Fluid Dynamics, The Lid Driven Cavity was simulated. The obtained results are promising and demonstrate the possibility to simulating non-periodic flows making use of the Fourier pseudo-spectral method. / Para compreender fenômenos relacionados à combustão, aeroacústica, transição a turbulência entre outros, a Dinâmica de Fluídos Computacional (CFD) utiliza os métodos de alta ordem. Um dos mais conhecidos é o método pseudo-espectral de Fourier, o qual alia: alta ordem de precisão na resolução das equações, com um baixo custo computacional. Este está ligado à utilização da FFT e do método da projeção do termo da pressão, o qual desvincula os cálculos da pressão da resolução das equações de Navier-Stokes. O procedimento de calcular o campo de pressão, normalmente é o mais oneroso nas metodologias convencionais. Apesar destas vantagens, o método pseudo-espectral de Fourier só pode ser utilizado para resolver problemas com condições de contorno periódicas, limitando o seu uso no campo da dinâmica de fluídos. Visando resolver essa restrição uma nova metodologia é proposta no presente trabalho, que tem como objetivo simular escoamentos não-periódicos utilizando o método pseudo-espectral de Fourier. Para isso, é utilizada a metodologia da Fronteira Imersa, a qual representa as condições de contorno de um escoamento através de um campo de força imposto nas equações de Navier-Stokes. Como teste, para essa nova metodologia, foi simulada uma cavidade com tampa deslizante (Lid Driven Cavity), problema clássico da mecânica de fluídos, que objetiva validar novas metodologias e códigos computacionais. Os resultados obtidos são promissores e demostram que é possível simular um escoamento não-periódico com o método pseudo-espectral de Fourier. / Mestre em Engenharia Mecânica
6

Paralelizace ultrazvukových simulací s využitím lokální Fourierovy dekompozice / Parallelisation of Ultrasound Simulations Using Local Fourier Decomposition

Dohnal, Matěj January 2015 (has links)
This document introduces a brand new method of the 1D, 2D and 3D decomposition with the use of local Fourier basis, its implementation and comparison with the currently used global 1D domain decomposition. The new method was designed, implemented and tested primarily for future use in the simulation software called The k-Wave toolbox, but it can be applied in many other spectral methods. Compared to the global 1D domain decomposition, the Local Fourier decomposition is up to 3 times faster and more efficient thanks to lower inter-process communication, however it is a little inaccurate. The final part of the thesis discusses the limitations of the new method and also introduces best practices to use 3D Local Fourier decomposition to achieve both more speed and accuracy.
7

Large-scale Numerical Optimization for Comprehensive HEV Energy Management - A Three-step Approach

Vishwanath, Aashrith 17 February 2022 (has links)
No description available.
8

Efficient Numerical Methods For Chemotaxis And Plasma Modulation Instability Studies

Nguyen, Truong B. 08 August 2019 (has links)
No description available.
9

Développement d’une méthode numérique pour les équations de Navier-Stokes en approximation anélastique : application aux instabilités de Rayleigh-Taylor / Developpement of a numerical method for Navier-Stokes equations in anelastic approximation : application to Rayleigh-Taylor instabilities

Hammouch, Zohra 30 May 2012 (has links)
L’approximation dite « anélastique » permet de filtrer les ondes acoustiques grâce à un développement asymptotique deséquations de Navier-Stokes, réduisant ainsi le pas en temps moyen, lors de la simulation numérique du développement d’instabilités hydrodynamiques. Ainsi, les équations anélastiques sont établies pour un mélange de deux fluides pour l’instabilité de Rayleigh-Taylor. La stabilité linéaire de l’écoulement est étudiée pour la première fois pour des fluides parfaits, par la méthode des modes normaux, dans le cadre de l’approximation anélastique. Le problème de Stokes issu des équations de Navier-Stokes sans les termes non linéaires (une partie de la poussée d’Archiméde est prise en compte) est défini ; l’éllipticité est démontrée, l’étude des modes propres et l’invariance liée à la pression sont détaillés. La méthode d’Uzawa est étendue à l’anélastique en mettant en évidence le découplage des vitesses en 3D, le cas particulier k = 0 et les modes parasites de pression. Le passage au multidomaine a permis d’établir les conditions de raccord (raccord Co de la pression sans condition aux limites physiques). Les algorithmes et l’implantation dans le code AMENOPHIS sont validés par les comparaisons de l’opérateur d’Uzawa développé en Fortran et à l’aide de Mathematica. De plus des résultats numériques ont été comparés à une expérience avec des fluides incompressibles. Finalement, une étude des solutions numériques obtenues avec les options anélastique et compressible a été menée. L’étude de l’influence de la stratification initiale des deux fluides sur le développement de l’instabilité de Rayleigh-Taylor est amorcée. / The « anelastic » approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilitiesdevelopment. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation.We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancyis considered) ; the ellipticity is demonstrated, the eigenmodes and the invariance related to the pressure are detailed.The Uzawa’s method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular casek = 0 and the spurius modes of pressure. Passing to multidomain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa’s operator inFortran and Mathematica langages, to an experiment with incompressible fluids and results from anelastic and compressiblenumerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated.

Page generated in 0.0519 seconds