• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude qualitative d’un système parabolique-elliptique de type keller-segel et de systèmes elliptiques non-coopératifs. / Qualitative study of a parabolic-elliptic Keller-Segel system and of noncooperative elliptic systems

Montaru, Alexandre 29 September 2014 (has links)
Cette thèse est consacrée à l'étude de deux problèmes : D'une part, nous considérons un système parabolique-elliptique de type Patlak-Keller-Segel avec sensitivité de type puissance et exposant critique. Nous étudions les solutions radiales de ce système dans une boule de l'espace euclidien et obtenons des résultats d'existenceunicité, de régularité ainsi qu'une alternative d'explosion. Concernant le comportement qualitatif en temps long des solutions radiales, pour toute dimension d'espace supérieure ou égale à trois, nous montrons un phénomène de masse critique qui généralise le cas déjà connu de la dimension deux mais présente par rapport à celui-ci un comportement très différent dans le cas de la masse critique. Dans le cas d'une masse sous-critique, pour toute dimension d'espace supérieure ou égale à deux, nous montrons de plus que les densités de cellule convergent uniformément à vitesse exponentielle vers l'unique solution stationnaire. D'autre part, nous étudions des systèmes elliptiques non coopératifs. Dans le cas de l'espace ou d'un demi-espace (ou même d'un cône), sous une hypothèse de structure naturelle sur les non-linéarités, nous donnons des conditions suffisantes pour avoir la proportionnalité des composantes, ce qui permet de ramener l'étude à celle d'une équation scalaire et ainsi d'obtenir des résultats de classification et de type Liouville pour le système. Dans le cas d'un domaine borné, la méthode de renormalisation de Gidas et Spruck permet d'obtenir une estimation a priori des solutions bornées et finalement de déduire l'existence d'une solution non triviale. / This thesis is concerned with the study of two problems : On the one hand, we consider a parabolic-elliptic system of Patlak-Keller-Segeltype with a critical power type sensitivity. We study the radially symmetric solutions of this system on a ball of the euclidean space and obtain wellposedness and regularity results together with a blow-up alternative. As for the long time qualitative behaviour of the radial solutions, for any space dimension greater or equal to three, we show that a critical mass phenomenon occurs, which generalizes the wellknown case of dimension two but, with respect to the latter, with a very different qualitative behaviour in the case of the critical mass. When the mass is subcritical, we moreover show that the cell density converges uniformly with exponential speed toward the unique steady state. This result is valid for any space dimension greater or equal to two, which was, to our knowledge, not known even for the most studied case of dimension two. On the other hand, we study noncooperative (semilinear and fully nonlinear) elliptic systems. In the case of the whole space or of a half-space (or even for a cone), under a natural structure condition on the nonlinearities, we give sufficient conditions to have proportionnality of the components, which allows to reduce the system to a scalar equation and then to get classification and Liouville type results. In the case of a bounded domain, thanks to the obtained Liouville type theorems, the blow-up method of Gidas and Spruck then allows to get an a priori estimate on the bounded solutions and eventually to deduce the existence of a non trivial solution by a topological method using the degree theory.
2

Modélisation, analyse mathématique et simulation numérique de problèmes issus de la biologie / Modelisation, mathematical analysis and numerical simulation of problems coming from biology

Devys, Anne 07 December 2010 (has links)
Cette thèse est consacrée à l’étude de quatre problèmes issus de la biologie. Le premier concerne la modélisation d’une population de métastases. Le modèle abouti a une équation de McKendrick-Von Foerster : une équation de conservation munie d’un terme au bord non–local. Nous montrons l’existence d’une unique solution et étudions son comportement asymptotique à l’aide de la notion d’entropie relative généralisée. L’étude numérique utilise le schéma WENO. Le deuxième concerne la modélisation de la respiration. Nous étudions la simulation des flux d’air dans l’appareil respiratoire à l’aide d’un modèle multi–échelle. Le système obtenu possède des conditions aux bords dissipatives non–usuelles. La méthode numérique employée est une méthode de décomposition qui permet de réduire le problème à la résolution de problèmes de Stokes avec conditions aux bords de type Dirichlet–Neumann classiques. Puis nous proposons un modèle pour les échanges gazeux montrant l’hétérogénéité de l’absorption de l’oxygène le long de l’arbre bronchique. La troisième partie concerne la cascade MAPK dans des ovocytes de Xénopes. La modélisation amène à une équation de type KPP. Après une étude mathématique montrant l’existence d’un front d’onde, nous réalisons une étude numérique fine du système. Enfin, nous étudions le système de Patlak–Keller–Segel 1D après explosion. Après une étude mathématique permettant de décrire le système après explosion à l’aide d’une mesure de défaut, nous donnons un schéma numérique adoptant le point de vue du transport optimal et permettant de simuler le système après explosion. / We investigate four models coming from biological contexts. The first one concerns a model describing the growth of a population of tumors. This model leads to a McKendrick–Von Foerster equation : a conservation law with a non–local boundary condition. We prove the existence and unicity of a solution, then we study, using the general relative entropy, its asymptotic behavior. We provide numerical simulations using WENO scheme. The second part concerns the modelisation of the respiration. First we study the air flux in the bronchial tree using a mulstiscale model. The system present non–usual dissipative boundary conditions. The numerical scheme we use is based on a decomposition idea that reduce the system to the resolution of Stokes problems with standard Dirichlet–Neumann conditions. Then, we propose a model concerning the gas exchanges bringing to light the heterogeneity of the absorption of oxygen along the bronchial tree. The third part concerns the MAPK cascade in Xenopus oocytes. The modelisation leads to an equation of KPP type. A mathematical study shows the existence of travelling waves. Then we provide a detailed numerical study of the system. Finally, the last part, concerns the system of Patlak–Keller–Segel 1D after blow–up. The mathematical study provide a description of the system after blow–up, based on the notion of default meausure. Then we propose a numerical scheme, adopting the optimal transport viewpoint and allowing to simulate the system after blow–up.
3

Analysis of some diffusive and kinetic models in mathematical biology and physics

Rosado Linares, Jesús 02 July 2010 (has links)
No description available.
4

Study of mathematical models of phenotype evolution and motion of cell populations / Étudier sur des modèles mathématiques du mouvement et de l'évolution phénotypique d'une population de cellules

Vilches, Karina 17 April 2014 (has links)
Cette thèse porte sur deux équations aux dérivées partielles qui modélisent les phénomènes biologiques de l'évolution génétique et mouvement dans l'espace d'une population de cellules. Le premier problème (Partie I, Chapitre 1), il est sur l'évolution phénotypique d'une population de cellules, nous avons réussi à démontrer que la limite asymptotique des solutions de l'équation différentielle partielle proposée est une masse de Dirac. Pour modéliser ce phénomène, nous avons étudié une équation de transport sur le mouvement génétique, y compris des éléments classiques de l'écologie mathématique et ajouter un transport terme dans la variable génétique x pour modéliser le phénomène de sélection naturelle. Nous intégrons un paramètre approprié dans notre modèle, qui a un problème associé normalisée. Ensuite, nous faisons quelques estimations pour donner des propriétés des solutions et obtenir sa limite. Pour ce faire, nous définissons une sous-solution et sur-solution, qui délimitent la solution du problème en appliquant un principe du maximum.Le deuxième problème (Partie II, Chapitre 2), résume les principaux résultats obtenus dans l'étude d'un système d'équations aux dérivées partielles paraboliques inspiré par l'équation Keller-Segel. C'est pourquoi le résultat principal est d'obtenir des conditions optimales sur la masse initiale pour l'existence globale et blow-up des solutions du système étudié, utilisé la méthode des moments et des inégalités de Hardy-Littlewood-Sobolev pour systèmes. / In Chapter 1, we consider a cell population where the individuals live in the same environmental conditions for some fixed period of time where they compete for nutrients among themselves, considering that offspring has the same trait as their parents, we were defining a fitness function that is trait and density dependent, assuming there were a unique trait best adapted at fixed environmental conditions. We modeled this phenomenon using a Transport Equation. The main result have been obtaining a Dirac mass concentration like solutions for the asymptotic behavior, incorporating a parameter, which is biologically sustained. We applied the classical framework to obtain this result. First, we give the apriori estimates and existence result to the simplified problem, next we add terms to have a more realistic model, then we study an approximate problem given some regularity and properties at solutions, finally we obtain this limit. We used tools as BV convergence properties, Anzats, sub and super solutions, maximum principle, etc.Chapter 2 had been publishing in the following papers (see part II):- E. ESPEJO, K. VILCHES, C. CONCA (2012), Sharp conditon for blow-up and global existence in a two species chemotactic Keller-Segel system in R^2, European J. Appl. Math- C. CONCA, E. ESPEJO, K. VILCHES (2011), Remarks on the blow-up and global existence for a two species chemotactic Keller-Segel system in R^2. European J. Appl. Math.In this chapter, we give the main results obtained in these two publications. We have been studying the sharp condition to global existence and Blow-up in time to the parabolic PDE system in R^2, inspired by the studies were done in the one species case. We model the movement for two chemotactic populations produced by one chemical substance. The main result is to extend the result obtained to classical simplified Keller-Segel model in one species case to the multispecies case, using the adequately tools for PDE’s systems. We used the moment method to prove Blow-up and have been bounding the entropy to show global existence.
5

Reaction-diffusion Equations with Nonlinear and Nonlocal Advection Applied to Cell Co-culture / Équation de réaction-diffusion avec advection non-linéaire et non-locale appliquée à la co-culture cellulaire

Fu, Xiaoming 19 November 2019 (has links)
Cette thèse est consacrée à l’étude d’une classe d’équations de réaction-diffusion avec advection non-locale. La motivation vient du mouvement cellulaire avec le phénomène de ségrégation observé dans des expérimentations de co-culture cellulaire. La première partie de la thèse développe principalement le cadre théorique de notre modèle, à savoir le caractère bien posé du problème et le comportement asymptotique des solutions dans les cas d'une ou plusieurs espèces.Dans le Chapitre 1, nous montrons qu'une équation scalaire avec un noyau non-local ayant la forme d'une fonction étagée, peut induire des bifurcations de Turing et de Turing-Hopf avec le nombre d’ondes dominant aussi grand que souhaité. Nous montrons que les propriétés de bifurcation de l'état stable homogène sont intimement liées aux coefficients de Fourier du noyau non-local.Dans le Chapitre 2, nous étudions un modèle d'advection non-local à deux espèces avec inhibition de contact lorsque la viscosité est égale à zéro. En employant la notion de solution intégrée le long des caractéristiques, nous pouvons rigoureusement démontrer le caractère bien posé du problème ainsi que la propriété de ségrégation d'un tel système. Par ailleurs, dans le cadre de la théorie des mesures de Young, nous étudions le comportement asymptotique des solutions. D'un point de vue numérique, nous constatons que sous l'effet de la ségrégation, le modèle d'advection non-locale admet un principe d'exclusion.Dans le dernier Chapitre de la thèse, nous nous intéressons à l'application de nos modèles aux expérimentations de co-culture cellulaire. Pour cela, nous choisissons un modèle hyperbolique de Keller-Segel sur un domaine borné. En utilisant les données expérimentales, nous simulons un processus de croissance cellulaire durant 6 jours dans une boîte de pétri circulaire et nous discutons de l’impact de la propriété de ségrégation et des distributions initiales sur les proportions de la population finale. / This thesis is devoted to the study for a class of reaction-diffusion equations with nonlocal advection. The motivation comes from the cell movement with segregation phenomenon observed in cell co-culture experiments. The first part of the thesis mainly develops the theoretical framework of our model, namely the well-posedness and asymptotic behavior of solutions in both single-species and multi-species cases.In Chapter 1, we show a single scalar equation with a step function kernel may display Turing and Turing-Hopf bifurcations with the dominant wavenumber as large as we want. We find the bifurcation properties of the homogeneous steady state is closed related to the Fourier coefficients of the nonlocal kernel.In Chapter 2, we study a two-species nonlocal advection model with contact inhibition when the viscosity equals zero. By employing the notion of the solution integrated along the characteristics, we rigorously prove the well-posedness and segregation property of such a hyperbolic nonlocal advection system. Besides, under the framework of Young measure theory, we investigate the asymptotic behavior of solutions. From a numerical perspective, we find that under the effect of segregation, the nonlocal advection model admits a competitive exclusion principle.In the last Chapter, we are interested in applying our models to a cell co-culturing experiment. To that aim, we choose a hyperbolic Keller-Segel model on a bounded domain. By utilizing the experimental data, we simulate a 6-day process of cell growth in a circular petri dish and discuss the impact of both the segregation property and initial distributions on the finial population proportions.
6

Partial differential equations modelling biophysical phenomena

Lorz, Alexander Stephan Richard January 2011 (has links)
No description available.
7

Coalescing Particle Systems and Applications to Nonlinear Fokker-Planck Equations

Zhelezov, Gleb, Zhelezov, Gleb January 2017 (has links)
We study a stochastic particle system with a logarithmically-singular inter-particle interaction potential which allows for inelastic particle collisions. We relate the squared Bessel process to the evolution of localized clusters of particles, and develop a numerical method capable of detecting collisions of many point particles without the use of pairwise computations, or very refined adaptive timestepping. We show that when the system is in an appropriate parameter regime, the hydrodynamic limit of the empirical mass density of the system is a solution to a nonlinear Fokker-Planck equation, such as the Patlak-Keller-Segel (PKS) model, or its multispecies variant. We then show that the presented numerical method is well-suited for the simulation of the formation of finite-time singularities in the PKS, as well as PKS pre- and post-blow-up dynamics. Additionally, we present numerical evidence that blow-up with an increasing total second moment in the two species Keller-Segel system occurs with a linearly increasing second moment in one component, and a linearly decreasing second moment in the other component.
8

Stochastic models for collective motions of populations / Modèles stochastiques pour des mouvements collectifs de populations

Pédèches, Laure 11 July 2017 (has links)
Dans cette thèse, on s'intéresse à des systèmes stochastiques modélisant un des phénomènes biologiques les plus mystérieux, les mouvements collectifs de populations. Pour un groupe de N individus, vus comme des particules sans poids ni volume, on étudie deux types de comportements asymptotiques : d'un côté, en temps long, les propriétés d'ergodicité et de flocking, de l'autre, quand le nombre de particules N tend vers l'infini, les phénomènes de propagation du chaos. Le modèle, déterministe, de Cucker-Smale, un modèle cinétique de champ moyen pour une population sans structure hiérarchique, est notre point de départ : les deux premiers chapitres sont consacrés à la compréhension de diverses dynamiques stochastiques qui s'en inspirent, du bruit étant rajouté sous différentes formes. Le troisième chapitre, originellement une tentative d'amélioration de ces résultats, est basé sur la méthode du développement en amas, un outil de physique statistique. On prouve l'ergodicité exponentielle de certains processus non- markoviens à drift non-régulier. Dans la dernière partie, on démontre l'existence d'une solution, unique dans un certain sens, pour un système stochastique de particules associé au modèle chimiotactique de Keller et Segel. / In this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied: ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey: the fist two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolic-elliptic model for chemotaxis. Existence and weak uniqueness are proven.
9

Études mathématiques et numériques de problèmes non-linéaires et non-locaux issus de la biologie / Mathematical and numerical studies of non-linear and non-local problems involved in biology

Muller, Nicolas 21 November 2013 (has links)
Dans cette thèse nous étudions l'influence de l'environnement sur le comportement d'une cellule dans deux situations différentes. Dans chacune de ces deux situations, apparaît un couplage non-linéaire sur le champ d'advection lié à un terme non-local provenant du bord du domaine. Dans une première partie, nous modélisons la polarisation cellulaire durant la conjugaison de la cellule de levure. Nous utilisons un modèle de type convection-diffusion avec un terme de convection non-linéaire et non-local. Ce modèle présente des similarités avec le modèle de Keller-Segel, la source du potentiel attractif étant sur le bord du domaine. Nous étudions le cas de la dimension un en utilisant des inégalités de Sobolev logarithmiques et HWI. En nous appuyant sur un raisonnement heuristique, nous ramenons l'étude de notre modèle en dimension deux au bord du domaine. Nous validons le modèle à l'aide des résultats expérimentaux obtenus par M. Piel en utilisant un bruit dynamique dans nos simulations numériques. Nous étudions ensuite le problème du dialogue cellulaire entre cellules de levure de sexe opposé. Dans une seconde partie, nous étudions la réaction immunitaire durant l'athérosclérose. Nous construisons puis développons un modèle structuré en âge pour décrire l'inflammation. Pour des paramètres particuliers, nous déterminons le comportement en temps long de notre système en utilisant une fonctionnelle de Lyapunov. / We investigate the influence of the environment on the behaviour of a cell in two different situations. In each of these situations, there is a non-linear coupling of the drift due to a non-local term coming from the boundary of the domain.The first part focuses on the modeling of cell polarisation during the mating of yeast. We use a convection-diffusion model with a non-linear and non-local drift. This model is similar to the Keller-Segel model, the source of the attractive potential comes from the boundary of the domain. We study the long time behaviour of the one-dimensional case by using logarithmic Sobolev and HWI inequalities.By relying on a heuristic, we reduce the study of our model in the two-dimensional case to the boundary of the domain. We validate the model with data provided by M. Piel. This validation requires adding a dynamical noise in our numerical simulations. We study then the cell discussion between yeast of opposite gender. In the second part we study the immune response in atherosclerosis. We build and then develop an age structured model in order to describe the inflammation. For specific parameters, we investigate the long time behaviour of our system by using a Lyapunov functional.
10

Sur une interprétation probabiliste des équations de Keller-Segel de type parabolique-parabolique / On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations

Tomasevic, Milica 14 November 2018 (has links)
En chimiotaxie, le modèle parabolique-parabolique classique de Keller-Segel en dimension d décrit l’évolution en temps de la densité d'une population de cellules et de la concentration d'un attracteur chimique. Cette thèse porte sur l’étude des équations de Keller-Segel parabolique-parabolique par des méthodes probabilistes. Dans ce but, nous construisons une équation différentielle stochastique non linéaire au sens de McKean-Vlasov dont le coefficient dont le coefficient de dérive dépend, de manière singulière, de tout le passé des lois marginales en temps du processus. Ces lois marginales couplées avec une transformation judicieuse permettent d’interpréter les équations de Keller-Segel de manière probabiliste. En ce qui concerne l'approximation particulaire il faut surmonter une difficulté intéressante et, nous semble-t-il, originale et difficile chaque particule interagit avec le passé de toutes les autres par l’intermédiaire d'un noyau espace-temps fortement singulier. En dimension 1, quelles que soient les valeurs des paramètres de modèle, nous prouvons que les équations de Keller-Segel sont bien posées dans tout l'espace et qu'il en est de même pour l’équation différentielle stochastique de McKean-Vlasov correspondante. Ensuite, nous prouvons caractère bien posé du système associé des particules en interaction non markovien et singulière. Nous établissons aussi la propagation du chaos vers une unique limite champ moyen dont les lois marginales en temps résolvent le système Keller-Segel parabolique-parabolique. En dimension 2, des paramètres de modèle trop grands peuvent conduire à une explosion en temps fini de la solution aux équations du Keller-Segel. De fait, nous montrons le caractère bien posé du processus non-linéaire au sens de McKean-Vlasov en imposant des contraintes sur les paramètres et données initiales. Pour obtenir ce résultat, nous combinons des techniques d'analyse d’équations aux dérivées partielles et d'analyse stochastique. Finalement, nous proposons une méthode numérique totalement probabiliste pour approcher les solutions du système Keller-Segel bi-dimensionnel et nous présentons les principaux résultats de nos expérimentations numériques. / The standard d-dimensional parabolic--parabolic Keller--Segel model for chemotaxis describes the time evolution of the density of a cell population and of the concentration of a chemical attractant. This thesis is devoted to the study of the parabolic--parabolic Keller-Segel equations using probabilistic methods. To this aim, we give rise to a non linear stochastic differential equation of McKean-Vlasov type whose drift involves all the past of one dimensional time marginal distributions of the process in a singular way. These marginal distributions coupled with a suitable transformation of them are our probabilistic interpretation of a solution to the Keller Segel model. In terms of approximations by particle systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises: each particle interacts with all the past of the other ones by means of a highly singular space-time kernel. In the one-dimensional case, we prove that the parabolic-parabolic Keller-Segel system in the whole Euclidean space and the corresponding McKean-Vlasov stochastic differential equation are well-posed in well chosen space of solutions for any values of the parameters of the model. Then, we prove the well-posedness of the corresponding singularly interacting and non-Markovian stochastic particle system. Furthermore, we establish its propagation of chaos towards a unique mean-field limit whose time marginal distributions solve the one-dimensional parabolic-parabolic Keller-Segel model. In the two-dimensional case there exists a possibility of a blow-up in finite time for the Keller-Segel system if some parameters of the model are large. Indeed, we prove the well-posedness of the mean field limit under some constraints on the parameters and initial datum. Under these constraints, we prove the well-posedness of the Keller-Segel model in the plane. To obtain this result, we combine PDE analysis and stochastic analysis techniques. Finally, we propose a fully probabilistic numerical method for approximating the two-dimensional Keller-Segel model and survey our main numerical results.

Page generated in 0.0863 seconds