• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biological control of purple loosestrife Lythrum salicaria by two chrysomelid beetles Galerucella pusilla and G. calmariensis

Schooler, Shon 07 May 1998 (has links)
In the first part of this study we monitored the development of biological control of purple loosestrife Lythrum salicaria over a six-year period at Morgan Lake in western Oregon. In 1992, two beetles, Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae), were released to control the wetland weed at this test site. Our purpose was to estimate quantitative performance parameters that might be generally applied in monitoring biological weed control. Our six performance measures were: 1) biological control agent establishment, 2) the rate of increase of the agents, 3) the rate of spread of the agents, 4) the effect of the agents on individual target plants, 5) the effect of the agents on the population of the target plants, and 6) the indirect impact of the biological control agents on the local plant community. The beetles established viable populations that increased during the study with an intrinsic rate of increase (r), based on the growth rate in damage, estimated at 2.24/year. Within six years after introduction, the beetles spread to saturate the entire purple loosestrife habitat (4100 m��) around the lake. The rate of spread, estimated by calculating a diffusion coefficient (D), was 57.5 m��/year. Adult beetles made seasonal, exploratory movements up to 30 m away from the host plant stand into surrounding crop fields, which suggests a disturbance-free buffer should be established in the habitat surrounding the loosestrife stand. By 1997, both flowering success and median stem density (per 0.125 m�� plot) of purple loosestrife declined to zero. Mean above-ground biomass decreased to 8.4% of its 1994 level. Biomass of native plant species increased by only 3% between 1996 and 1997. Overall, G. pusilla and G. calmariensis reduced the abundance of the target plant at our site. Our monitoring methods were effective at quantitatively measuring the establishment, increase, spread, and damage of the biological control agent, the subsequent decline of the target plant, and the impact on the local plant community. The second part of our study used field and greenhouse experiments to assess non-target effects of two introduced biological control organisms (Galerucella pusilla Duftschmid and G. calmariensis L.: Chrysomelidae) on the economically important ornamental plant, crape myrtle (Lagerstroemia indica L: Lythraceae). Prior host specificity tests performed in the laboratory found that beetles fed, but were unable to complete their life cycle, on this non-target plant. However, there was concern over damage that might occur when the two plant species existed together. This study extended prior tests into a field environment in order to compare the physiological host range revealed in greenhouse tests with the ecological host range revealed in the field. We assumed, based on prior evidence, that the control agents would not complete development on the non-target plant, and therefore, when the non-target organism was isolated from populations of the target organism the direct effects of the biological control agents would be negligible. When the target and non-target organisms existed together, the magnitude of indirect effect of the target organism on the non-target organism via the control agent was expected to increase with: 1) decreasing distance between the target and non-target organisms, and 2) increasing dispersal capability of the control agents. As expected from prior studies beetle feeding and oviposition occurred on crape myrtle but the beetles could not complete development on this non-target plant in our greenhouse and field tests. Leaf damage inflicted by the beetle was lower on crape myrtle than on purple loosestrife plants used as controls and extensive defoliation to the non-target plant was limited to within 30 m from the edge of the purple loosestrife stand. Biomass of crape myrtle was significantly reduced near the stand compared with plants that remained relatively untouched at greater distances. Purple loosestrife biomass exhibited a greater reduction with decreasing distance from the source of beetle colonization. In this thesis we construct and implement strategies for quantitatively assessing success of biological control programs and risk of introduced biological agents to non-target organisms. Through these observations and experiments we hope to increase the predictability and safety of biological control programs. / Graduation date: 1998
2

Biological control of purple loosestrife (Lythrum salicaria) in Quebec

Templeton, Karen. January 1999 (has links)
Two European leaf-eating beetles, Galerucella calmariensis L. and G. pusilla (Duft.)(Chrysomelidae:Coleoptera) were released at four sites in Quebec to manage the semi-aquatic exotic weed, purple loosestrife (Lythrum salicaria L.). Protocols for monitoring the Galerucella populations and detecting changes in the plant communities were implemented. In addition, the effect of seeding with native plants species in conjunction with Galerucella herbivory was tested in an experiment at a purple loosestrife stand in Ontario. Releases of lab-reared beetles in Quebec in 1996 did not survive to 1997 at any of the 4 sites, but releases of field collected beetles in 1997 overwintered successfully at 3 of the 4 sites. The density of purple loosestrife in 1998 ranged from 28% (Cap Tourmente) to 84% (Hull). The density of Galerucella in 1998 ranged from 6 (Lac St Francois) to 50 (Hull) adults/m 2/min. In the Ontario experiment, herbivory and seeding together interacted to increase the biomass of other plant species significantly---and thereby reduced the dominance (proportion of the biomass) of purple loosestrife---but did not have a significant effect on the biomass of purple loosestrife in the first season.
3

Biological control of purple loosestrife (Lythrum salicaria) in Quebec

Templeton, Karen. January 1999 (has links)
No description available.
4

Are tritrophic interactions shaped by plant genotype? A field experiment.

Nordström, Ylva January 2013 (has links)
In recent years it has become apparent that when studying plant-herbivore interactions, it is important to also consider the multitrophic context, i.e. to what extent generalist and specialist enemies act as bodyguards for the plant. I have performed a field experiment with 25 genets, varying in plant defense levels, of meadowsweet (Filipendula ulmaria) and its herbivore, the chrysomelid beetle Galerucella tenella. Each genet was treated with four different density manipulations of G. tenella (5, 15, 30, and 60 larvae per genet). The experiment was set up on an archipelago island with natural levels of a specialist hymenopteran parasitoid Asecodes parviclava and generalist natural enemies. I set up the following hypotheses: 1) larval survival will be higher on less defended plants than on more defended plants, 2) the proportion of parasitoids will be higher on more defended plants, and 3) larval survival will increase with increasing larval densities. The most important findings of the experiment were an overall very low total survival of larvae (G. tenella pupae and A. parviclava mummies), a generally high parasitism by A. parviclava on more defended plants, and that two groups of generalist predators (hunting and web-forming spiders) were more frequent on less defended plants. My study suggests that herbivore survival may not be higher on less defended plants under situations with abundant occurrence of generalist predators, as they are able to trace high-quality foraging sites.
5

Ecological and Evolutionary Consequences of Herbivory in the Perennial Herb Lythrum salicaria

Lehndal, Lina January 2015 (has links)
In this thesis, I combined field, common-garden and greenhouse experiments to examine the ecological and evolutionary consequences of plant-herbivore interactions in the perennial herb Lythrum salicaria. More specifically I examined (1) whether resistance and tolerance to damage from herbivores vary with latitude and are positively related to the intensity of herbivory in natural populations, (2) whether effects of herbivory on plant fitness vary with latitude, (3) whether populations are locally adapted and whether herbivory influences the relative fitness of populations, and (4) whether the intensity and effects of insect herbivory on reproductive output vary locally along a disturbance gradient and are associated with differences in plant resistance. A common-garden and a greenhouse experiment demonstrated that plant resistance decreased whereas plant tolerance increased with latitude of origin among populations sampled along a latitudinal gradient in Sweden. Oviposition and feeding preference in the greenhouse and leaf damage in the common-garden experiment were negatively related to natural damage in the source populations. Experimental removal of insect herbivores in three populations sampled along the latitudinal gradient demonstrated that intensity of herbivory and its effects on plant fitness decreased towards the north. A reciprocal transplant experiment among the same three populations showed that herbivory affected the relative fitness of the three populations, but did not detect any evidence of local adaptation. Instead the southernmost population had the highest relative fitness at all three sites. A herbivore-removal experiment conducted in nine populations in an archipelago in northern Sweden demonstrated that insect herbivory strongly influenced among-population variation in reproductive output. However, variation in resistance was not related to differences in intensity of herbivory at this spatial scale. Taken together, the results demonstrate that resistance and tolerance to herbivory vary with latitude but in opposite directions, that intensity of herbivory is a major determinant of flowering and seed output, and that the strength of herbivore-mediated selection varies among populations in Lythrum salicaria. They further indicate that both physical disturbance regime and latitudinal variation in abiotic conditions may strongly influence the performance and abundance of perennial herbs because of their effects on interactions with specialized herbivores.
6

A Study of the Impact of an Introduced Herbivore on Pollinator-mediated Interactions and Female Fitness in 'Lythrum salicaria'

Russell-Mercier, Jake L. 09 April 2013 (has links)
Herbivory can have many effects on plant fitness, including altering plant-pollinator interactions and sexual reproduction in angiosperms. Pollinator-mediated interactions may be impacted when herbivores alter plant traits, such as floral display size, that can influence pollinator visitation rates, and, ultimately, the reproductive component of plant fitness. Here I describe an investigation into the indirect effects of feeding by beetles released as a biological control agent, Galerucella calmariensis and G. pusilla, on plant-pollinator interactions and reproductive output in the invasive plant Lythrum salicaria L. (purple loosestrife). During the summer of 2011, three treatments (low, ambient and mechanical herbivory) were applied to 105 plants during the pre-flowering period of growth. At the onset of flowering, a series of pollinator observations were conducted over the course of approximately 1.5 weeks. Several aspects of floral display were affected by the herbivory treatments, including increased inflorescence and flower production in the ambient and mechanical herbivory treatments, relative to the low herbivory treatment. Treatment type did not have a significant effect on the number of pollinator foraging bouts, but had marginally significant effects on the number of flowers probed per pollinator foraging bout and per 30-minutes. Moreover, treatment had a significant effect on the number of switches among the inflorescences on a single plant. I discuss the possibility that the differences in pollinator visitation were mediated by differences in the architecture and the size of floral display. There were no detectable differences in fruit or seed production (i.e., female fitness) among treatments. However, as I discuss, differences in pollinator visitation may affect other unmeasured aspects of fitness, such as the level of inbreeding or the number of seeds sired through male function.
7

A Study of the Impact of an Introduced Herbivore on Pollinator-mediated Interactions and Female Fitness in 'Lythrum salicaria'

Russell-Mercier, Jake L. 09 April 2013 (has links)
Herbivory can have many effects on plant fitness, including altering plant-pollinator interactions and sexual reproduction in angiosperms. Pollinator-mediated interactions may be impacted when herbivores alter plant traits, such as floral display size, that can influence pollinator visitation rates, and, ultimately, the reproductive component of plant fitness. Here I describe an investigation into the indirect effects of feeding by beetles released as a biological control agent, Galerucella calmariensis and G. pusilla, on plant-pollinator interactions and reproductive output in the invasive plant Lythrum salicaria L. (purple loosestrife). During the summer of 2011, three treatments (low, ambient and mechanical herbivory) were applied to 105 plants during the pre-flowering period of growth. At the onset of flowering, a series of pollinator observations were conducted over the course of approximately 1.5 weeks. Several aspects of floral display were affected by the herbivory treatments, including increased inflorescence and flower production in the ambient and mechanical herbivory treatments, relative to the low herbivory treatment. Treatment type did not have a significant effect on the number of pollinator foraging bouts, but had marginally significant effects on the number of flowers probed per pollinator foraging bout and per 30-minutes. Moreover, treatment had a significant effect on the number of switches among the inflorescences on a single plant. I discuss the possibility that the differences in pollinator visitation were mediated by differences in the architecture and the size of floral display. There were no detectable differences in fruit or seed production (i.e., female fitness) among treatments. However, as I discuss, differences in pollinator visitation may affect other unmeasured aspects of fitness, such as the level of inbreeding or the number of seeds sired through male function.
8

A Study of the Impact of an Introduced Herbivore on Pollinator-mediated Interactions and Female Fitness in 'Lythrum salicaria'

Russell-Mercier, Jake L. January 2013 (has links)
Herbivory can have many effects on plant fitness, including altering plant-pollinator interactions and sexual reproduction in angiosperms. Pollinator-mediated interactions may be impacted when herbivores alter plant traits, such as floral display size, that can influence pollinator visitation rates, and, ultimately, the reproductive component of plant fitness. Here I describe an investigation into the indirect effects of feeding by beetles released as a biological control agent, Galerucella calmariensis and G. pusilla, on plant-pollinator interactions and reproductive output in the invasive plant Lythrum salicaria L. (purple loosestrife). During the summer of 2011, three treatments (low, ambient and mechanical herbivory) were applied to 105 plants during the pre-flowering period of growth. At the onset of flowering, a series of pollinator observations were conducted over the course of approximately 1.5 weeks. Several aspects of floral display were affected by the herbivory treatments, including increased inflorescence and flower production in the ambient and mechanical herbivory treatments, relative to the low herbivory treatment. Treatment type did not have a significant effect on the number of pollinator foraging bouts, but had marginally significant effects on the number of flowers probed per pollinator foraging bout and per 30-minutes. Moreover, treatment had a significant effect on the number of switches among the inflorescences on a single plant. I discuss the possibility that the differences in pollinator visitation were mediated by differences in the architecture and the size of floral display. There were no detectable differences in fruit or seed production (i.e., female fitness) among treatments. However, as I discuss, differences in pollinator visitation may affect other unmeasured aspects of fitness, such as the level of inbreeding or the number of seeds sired through male function.
9

The Impact of Two Introduced Herbivores on the Population Ecology of Lythrum Salicaria: Implications for Plant Performance, Reproduction and Community Diversity

St. Louis, Excedera January 2014 (has links)
The release of biological control agents into the environment is inherently risky: assessment of those risks through on-going, post-release monitoring is very important. Herbivores have the potential to inflict multiple impacts on a host plant’s performance and reproduction. Previous research demonstrates that the effects of herbivory on plants include changes to plant architecture, biomass allocation, flowering time and reproductive success, to list a few. Moreover, when herbivory significantly impacts the population ecology of a dominant community member, other species can be indirectly affected, ultimately influencing plant community ecology. Here I describe an investigation into the impacts of two introduced herbivorous biological control agents: the leaf beetle Galerucella calmariensis (Coleoptera: Chrysomelidae), and the flower-feeding weevil, Nanophyes marmoratus (Coleoptera: Brentidae) on several characteristics of the host plant species, invasive purple loosestrife (Lythrum salicaria), and its surrounding community. I collected data on 18 invaded communities from around eastern Ontario, including information on feeding damage and the density of each species of biological control, along with data on purple loosestrife’s height and biomass, inflorescence length, inflorescence number and fruit production. The history of each site’s colonization by Galerucella was also considered. I discovered that the density of both Galerucella and Nanophyes at a site was negatively associated with Lythrum fruit production. However, herbivore density was not significantly associated with Lythrum biomass, height or the species richness of the surrounding plant community. This study, conducted 20 years after the initial Ontario release of Galerucella, demonstrates that although vegetative traits of Lythrum do not appear to be significantly impacted by the presence of Galerucella or Nanophyes, reproductive traits are. Twenty years is likely too short a time period to adequately assess the impacts of the release on community species richness, although my data indicate that communities with smaller Lythrum plants tend to have higher species richness. This study covered a small geographical area and data collection was conducted for a single season only; adding additional years and/ or sites is recommended.
10

Ecology and evolution in a host-parasitoid system : Host search, immune responses and parasitoid virulence

Fors, Lisa January 2015 (has links)
In host-parasitoid systems, there is a continuous coevolutionary arms race where each species imposes a strong selection pressure on the other. The host needs to develop defence strategies in order to escape parasitism and the parasitoid must evolve counter-defence strategies in order to overcome the host’s immune defence and successfully reproduce. This makes host-parasitoid systems excellent model systems for understanding evolutionary processes underlying host race formation and speciation. In order to gain a better understanding of the complexity of host-parasitoid interactions several aspects must be considered, such as search behaviour and host selection in the parasitoid, the development of immune responses in the host and counter-defence strategies in the parasitoid. In this thesis, I investigate interactions and coevolution in a natural host-parasitoid system, consisting of five species of Galerucella leaf beetles and three species of Asecodes parasitoids, by combining behavioural ecology with chemical ecology and immunology. In the studies performed, I found that pheromone production and responses in the beetles are connected to the phylogenetic relatedness between the Galerucella species (Paper I). I found no evidence that Asecodes exploits the adult pheromone to locate host larvae, but observed an ability in the parasitoids to distinguish a better host from a less suitable one based on larval odors (Paper II). The studies also revealed large differences in immune competence between the Galerucella species, which were linked to differences in hemocyte composition in the beetle larvae (Paper III, IV). Further, the results suggest that parasitism success in polyphagous Asecodes is strongly affected by former host species of the parasitoid (Paper IV). In conclusion, the results of this thesis suggest an on-going evolution in both parasitoid virulence and host immune responses in the Asecodes-Galerucella system. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.</p>

Page generated in 0.0652 seconds