• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 3
  • Tagged with
  • 30
  • 15
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On Adhesion and Galling in Metal Forming

Hanson, Magnus January 2008 (has links)
Metal forming is widely used in the industry to produce cans, tubes, car chassis, rods, wires etc. Forming certain materials such as stainless steel, aluminium and titanium, is often difficult, and problems associated with transfer of work material to the tool material are frequent. Transferred material may scratch and deform the following manufactured pieces, a phenomenon named galling. Lubricants can, to some degree, solve these problems. However, many forming oils are hazardous to the environment, and therefore it is highly desirable to replace them or get rid of them. This thesis investigates the nature of the galling phenomenon and tries to explain under which conditions such problems arise. Dry sliding tests have been performed in a dedicated load-scanner equipment. Difficult work materials have been tested against tool materials under various conditions and the samples have then been studied by advanced analytical techniques, such as ESCA and TEM, to study the detailed tribological mechanisms occurring in the contact between work and tool material. The general assumption is that material transfer only occurs when there is metal to metal contact. In this work it has been found that, for stainless steel, the oxide plays a very important role for the sticky behaviour of stainless steel, and that metal to metal contact is not a necessary condition for galling. Several PVD-coated tool materials have been tested and it was found that vanadium nitride coatings can be tuned regarding their chemical composition, to be more galling resistant than conventional coatings. The surface roughness of the tool material is very strongly coupled to the tools ability to resist galling. The smoother the tool surface, the less risk of material transfer and galling. Some work materials, like aluminium and titanium, transfer to even the smoothest tool materials. A proposed explanation for this is that their oxides are much harder than the bulk material and the tool material matrix. When deforming the work material, the oxide will fracture into small hard scales, which can indent the tool material. Indented hard scales will then contribute to material transfer of more work material to the tool.
12

On Transfer of Work Material to Tools

Heinrichs, Jannica January 2012 (has links)
Bulk forming and cutting are widely used to shape metals in industrial production. Bulk forming is characterized by large strains, extensive plastic deformation and large surface expansions. Cutting is characterized by high speeds, high pressures and high temperatures. The prevailing conditions during these processes lead to transfer of work material to tools. In bulk forming this is a significant problem. The transferred work material is hardened and becomes harder than the work material, causing galling. This leads to high friction and high forming forces, bad surface finish of the formed products and significant difficulties to produce complicated geometries. In cutting, transfer of work material can be desired for protection of the tool surface. However, the transfer film has to be of the correct type to provide a stable and predictive behaviour during operation. In this thesis the influence from tool material and surface treatment on work material transfer has been studied for both applications, with the use of simplified laboratory test methods followed by extensive surface studies. Both the tendency to, appearance of and chemical composition of work material transfer is evaluated. The results are compared with real industrial examples, to ensure that the correct mechanisms are mimicked. In forming, the problems arise when poor lubrication prevails, due to high forming forces or large surface expansions. The transfer of work material can then be avoided with the use of a galling resistant coating, offering low adhesion. However, the coating has to be as smooth as possible, to avoid activation of the work material and subsequent transfer. In cutting, the desired transfer film can be obtained by choosing the correct cutting parameters. The geometry and material of the fabricated component is often predetermined, setting the general cutting conditions, but the cutting speed influences the formation of the transfer film. Too low speed or too high speed leads to an unstable cutting process and poor surface finish of the piece. The speed intervals for each mechanism are partly determined by the tool material and thus by the tool coating.
13

Development of a test method for measuring galling resistance

W. Lindvall, Fredrik January 2007 (has links)
Abstract Today sheet metal forming is used to make a variety of mass production because it has a high production rate. One of the biggest concerns in sheet metal forming is wear of the tool in form of galling. Galling in sheet metal forming is characterised by an increased tool surface roughness, unstable friction in the forming process and undesirable scratches on the final products. Several ways of ranking materials resistance to galling exist today but only ASM G98 is standardised. Nevertheless, some different methods developed for ranking tool materials’ tendency to galling have also been developed. The aim of this thesis is to develop and improve the Uddeholm Tooling Tribo Test rig located at Uddeholm Tooling AB. The rig, which is a variation of cylinder-on-cylinder test equipment, was improved with a new tool holder, a utilization of the real sheet material counter face and a new data acquisition system and software. The galling was detected using scratches on the sheet, metallographic analysis of the material adhered on the tool specimen, monitoring of coefficient of friction and the standard deviation of the coefficient of friction. The obtained results show difficulties with ranking of tool materials in terms of galling resistance under non-lubricated conditions. The tool steels tested were SVERKER21 and UNIMAX. AISI304-10, DC04 and DOCOL1000DP sheets were used. Additionally a low friction coating of BalinitC on SVERKER21 was also included. All specimens of the tool steels showed signs of galling on every run, only the low friction coating showed a transition in behaviour of friction coefficient corresponding to galling initiation. The standard deviation of the coefficient of friction increased at low loads. A decrease of the test loads led to stability loss of the system detected by an increase in the standard deviation of the coefficient of friction. This might happen because the Kistler platform is originally designed for larger loads. Although, the test rig does not work properly in its present state, the concept looks promising.
14

On tool steel, surface preparation, contact geometry and wear in sheet metal forming

W. Lindvall, Fredrik January 2011 (has links)
In sheet metal forming operations the life length of the production equipment islargely dependent on the wear of the tools that are in direct contact with the sheet.One form of adhesive wear where some sheet material gets transferred to the tool, alsoknown as galling, is the most common cause of tool failure. The transferred materialsticks firmly to the tool and will scratch subsequent sheets and increase friction, renderingthem anywhere from aesthetically unsightly to completely ripped apart. Withcareful combination of several parameters the tools production life can be significantlyextended. The surface preparation of the tools has a large influence on the tool life, thesurface has to be smooth and yet not without texture. It was shown in strip reductiontesting that the orientation as well as the depth of the surface texture left by polishinginfluenced the tool life and that a texture perpendicular to the sliding direction was toprefer. The geometry of the forming tool is also a parameter to take into account as itinfluences the tool life not only by changing the contact pressure but also in itself. Ina sliding against flat sheet test rig a lower contact pressure increased the sliding distanceto galling. When two different geometries were compared at the same contactpressure it was found that there was a difference in tool life. As to the tool itself thematerial it’s made of influences the wear rate and tool life. Different tool steels wasinvestigated in sliding wear against metal sheets; Vancron 40 performed better thanVanadis 6 and S290PM performed better than a AISI M2 grade steel.
15

Padrões de diversidade de insetos galhadores no Cerrado: a importância da comunidade de plantas / Diversity patterns of gall-inducing insects in the Cerrado: the importance of host plant community composition

ARAÚJO, Walter Santos de 16 February 2011 (has links)
Made available in DSpace on 2014-07-29T16:21:16Z (GMT). No. of bitstreams: 1 dissertacao_walter.pdf: 583099 bytes, checksum: 9b692b715751bbe0fea761a5fd508f6b (MD5) Previous issue date: 2011-02-16 / The idea that host plants influence the richness of galling is widespread and has several approaches in literature. Many of these approaches take into account the hosts richness, the density of vegetation, plant species composition and architecture of plants, as factors that influence the diversity patterns of gall-inducing insects. In this study we investigated the importance of structure, richness and community composition of plants to the distribution of galling. Inventories on the diversity of gall morphotypes and host plants were conducted in various areas of the Brazilian Cerrado, in the states of Distrito Federal, Goiás, Minas Gerais and Tocantins. Altogether we sampled 1882 plants belonging to 131 species and 43 plant families, among which 64 species (48.8%) and 31 families (72.1%) had galling. We recorded 112 species of galling that occurred mainly in Vochysiaceae (with 19 species), followed by Fabaceae and Malpighiaceae (with 13 and 12 species respectively). Were recorded five genera and 13 species of plants, considered as a super-host of galling. These taxa housed together 45 morphotypes of gall, which represents 40% of the total diversity sampled. The genus Qualea (Vochysiaceae) alone sheltered 18 morphotypes of gall. No specific level Qualea parviflora was the species with the greatest richness of gall (eight types). At the structural level, the vegetal cover hypothesis was the best predictor of the richness of galling, explaining 45%. We also find results which show that factors such as the density and architecture of plants positively influenced the diversity of galling. The richness of plant species and plant community composition were also important for the distribution of galling. For example, where the super-host taxa were present occurred two times more galls than where they were absent. Our results indicate that both the structure and the richness and composition of the flora influenced the diversity of galling. Thus, the results provide an expanding knowledge of the diversity of gallinducing insects, under the botanical point of view. / A ideia de que plantas hospedeiras influenciam na riqueza de insetos galhadores é bastante difundida e tem diversas abordagens na literatura. Algumas dessas abordagens levam em conta a riqueza de hospedeiras, a densidade da vegetação, a composição de espécies vegetais e a arquitetura das plantas, como fatores que influenciam nos padrões de diversidade dos galhadores. Nesse trabalho investigamos a importância da estrutura, riqueza e composição da comunidade de plantas para a distribuição de insetos galhadores. Inventários sobre a diversidade de morfotipos de galhas e plantas hospedeiras foram realizados em várias áreas do Cerrado brasileiro, nos estados do Distrito Federal, Goiás, Minas Gerais e Tocantins. Ao todo foram amostradas 1882 plantas pertencentes a 131 espécies e 43 famílias vegetais, sendo que 64 espécies (48,8%) e 31 famílias (72,1%) hospedaram insetos galhadores. Registramos 112 espécies de insetos galhadores que ocorreram principalmente em Vochysiaceae (com 19 espécies), seguida de Fabaceae e Malpighiaceae (com 13 e 12 espécies, respectivamente). Foram registrados cinco gêneros e 13 espécies de plantas, consideradas como super-hospedeiras de insetos galhadores. Esses taxa abrigaram juntos 45 morfotipos de galhas, o que representa 40% da diversidade total amostrada. O gênero Qualea (Vochysiaceae) abrigou sozinho 18 morfotipos de galhas. No nível específico Qualea parviflora foi a espécie com maior riqueza de galhas (oito tipos). Ao nível estrutural, a hipótese da cobertura vegetal foi o melhor preditor da riqueza de galhadores, explicando 45%. Também encontramos resultados que mostram que fatores como a densidade e a arquitetura das plantas influenciam positivamente a diversidade de insetos galhadores. A riqueza de espécies de plantas e a composição da comunidade vegetal também foram importantes para a distribuição dos insetos galhadores. Por exemplo, locais onde os taxa super-hospedeiros estavam presentes tiveram duas vezes mais galhas do que onde estavam ausentes. Nossos resultados apontam que tanto a estrutura quanto a riqueza e composição da flora podem ter influências na diversidade de insetos galhadores. Desse modo, os resultados obtidos proporcionam uma ampliação dos conhecimentos da diversidade de insetos galhadores, sob o ponto de vista botânico.
16

The influence of tool steel microstructure on galling

Karlsson, Patrik January 2014 (has links)
In sheet metal forming (SMF) of materials such as stainless steels there is a major problem with transfer and accumulation of sheet material to the metal forming tool surface. The problem is known as galling; a sort of severe adhesive wear, which results in severe scratching of produced parts. In this thesis, the overall aim was to gain knowledge of the influence of tool steel microstructure on galling initiation under sliding conditions. It was discovered that material transfer and tool steel damage caused by sheet material flow creating wear-induced galling initiation sites occurred in the early stage of galling. The galling resistance was higher for tool steels with higher matrix hardness due to better resistance to tool steel damage. Initial friction and critical contact pressure to galling was influenced by the strength of the sheet material. Material transfer happened at low pressures and the friction value was high in a case of sheet materials with lower proof strength, possibly due to the sheet contact against the tool steel matrix resulting in high adhesion and quicker tool damage. It was demonstrated that, in addition to hardness of the tool steel matrix and sheet material proof strength, tool steel microstructural features like size, shape, distribution and height of hard phases are important parameters influencing galling. Tool steels comprising homogeneously distributed, small and high hard phases better prevented the contact between sheet material and the tool steel matrix. Thus, a metal to metal contact with high friction was more efficiently avoided, which resulted in better tool performance.
17

Endommagement en surface des alliages d'aluminium en mise en forme à froid / Damage at the surface of the aluminium alloys cold-forming

Pham, Tat Thang 22 January 2015 (has links)
La thèse étudie les mécanismes de collage des alliages d’aluminium sur les outils lors de leur mise en forme. Dans un premier temps une méthodologie expérimentale utilisant le banc d’essai USTest proposée. Elle permet de travailler en laboratoire en respectant des conditions de contact proches de celles rencontrées en industries. Une campagne d’essais est réalisée, sollicitant le matériau sous diverses conditions de pression de contact, de vitesse de glissement et de lubrification. Les analyses métallurgiques et mécaniques de cette campagne permettent d’établir un lien entre les conditions de contact d’une part et le transfert de matière sur les outils d’autre part. Un mécanisme d’apparition du collage de l’aluminium sur les outils en forge à froid est proposé. Dans un second temps l’aptitude à prédire l’apparition du collage aux outils des alliages d’aluminium lors de leur mise en forme à froid de quatre modèles d’endommagement et de rupture usuels est étudiée. Un ensemble de simulations numériques est mené pour quantifier l’influence des conditions de contact rencontrées lors des essais UST sur l’état d’endommagement des éprouvettes au voisinage de leur surface. Les résultats montrent que le coefficient de frottement seul n’est pas suffisant pour rendre en compte de la sévérité du tribosystème et qu’une approche multiéchelle est nécessaire pour simuler l’effet de la rugosité des outils sur l’apparition des premiers transferts de matière. De nombreuses perspectives sont également présentées pour améliorer la compréhension des phénomènes de collage et la modélisation numérique de ces phénomènes. / The thesis investigates the mechanisms of galling of aluminum alloys on tools during cold forming. First, an experimental methodology using the test bench UST is proposed. It enables the simulation in the laboratory of the conditions of contact similar to those encountered in industries. A series of trials is performed, testing the material in various conditions of contact pressures, sliding speeds and of lubrication. A link between the contact conditions on the one hand and mass transfer on the other hand tools is established and a mechanism of occurrence of adhesion of aluminum on cold forging tools is proposed. In a second step four damage and failure models are presented and their abilities to predict the onset of galling of aluminum are discussed. A set of finite element simulations is performed and compared to experimental results in order to quantify the influence of contact conditions on evolution of damage encountered in the vicinity of the specimen surface. The results show that a single coefficient of friction is not sufficient to model the severity of the tribosystem. A multi-scale approach is then proposed to simulate the effect of the roughness of the tools on the first step of material transfer. Many prospects are also presented to improve the understanding of the phenomena of bonding and numerical modeling of these phenomena.
18

The early stage of galling

Karlsson, Patrik January 2012 (has links)
In sheet metal forming (SMF) of materials such as stainless steels there is a major problem with transfer and accumulation of sheet material to the metal forming tool surface. The problem is known as galling; a kind of severe adhesive wear, which results in severe scratching of produced parts. In this thesis, galling observed in contacts between tool steels and stainless steel sheets under lubricated sliding conditions was studied, focusing on the early stage of galling. It was found that changes in friction cannot be used as galling indicator in the early stage of galling because transfer and accumulation of sheet material happens even though friction is low and stable. The progression of galling is influenced by tool steel damage occurring around the tool steel hard phases caused by sheet material flow, which results in formation of wear-induced galling initiation sites. A correlation between the critical contact pressure to galling and sheet material proof stress was found. Galling happened at lower pressures for sheet material with lower proof stress possibly due to easier sheet material flow, resulting in quicker tool damage. Material transfer and tool steel damage were delayed for tool steels comprising homogenously distributed, small and high hard phases. Additionally, the galling resistance was higher for tool steels with higher hardness due to decreased tool steel damage. In a comparison between observations of the worn tool surfaces after wear tests and calculations in FEM it was found that material transfer did not take place at regions with highest contact pressures but at regions with highest plastic strains. The results obtained in this thesis indicate that tool steel damage and sheet material flow occurring in the contact during sliding are important factors influencing galling.
19

The early stage of galling

Karlsson, Patrik January 2012 (has links)
In sheet metal forming (SMF) of materials such as stainless steels there is a major problem with transfer and accumulation of sheet material to the metal forming tool surface. The problem is known as galling; a kind of severe adhesive wear, which results in severe scratching of produced parts. In this thesis, galling observed in contacts between tool steels and stainless steel sheets under lubricated sliding conditions was studied, focusing on the early stage of galling. It was found that changes in friction cannot be used as galling indicator in the early stage of galling because transfer and accumulation of sheet material happens even though friction is low and stable. The progression of galling is influenced by tool steel damage occurring around the tool steel hard phases caused by sheet material flow, which results in formation of wear-induced galling initiation sites. A correlation between the critical contact pressure to galling and sheet material proof stress was found. Galling happened at lower pressures for sheet material with lower proof stress possibly due to easier sheet material flow, resulting in quicker tool damage. Material transfer and tool steel damage were delayed for tool steels comprising homogenously distributed, small and high hard phases. Additionally, the galling resistance was higher for tool steels with higher hardness due to decreased tool steel damage. In a comparison between observations of the worn tool surfaces after wear tests and calculations in FEM it was found that material transfer did not take place at regions with highest contact pressures but at regions with highest plastic strains. The results obtained in this thesis indicate that tool steel damage and sheet material flow occurring in the contact during sliding are important factors influencing galling.
20

Development of a Nitrogen-Modified Stainless-Steel Hardfacing Alloy

Smith, Ryan Thomas January 2015 (has links)
No description available.

Page generated in 0.0701 seconds