Spelling suggestions: "subject:"galois covering"" "subject:"valois covering""
1 |
On the Clebsch-Gordan problem for quiver representationsHerschend, Martin January 2008 (has links)
On the category of representations of a given quiver we define a tensor product point-wise and arrow-wise. The corresponding Clebsch-Gordan problem of how the tensor product of indecomposable representations decomposes into a direct sum of indecomposable representations is the topic of this thesis. The choice of tensor product is motivated by an investigation of possible ways to modify the classical tensor product from group representation theory to the case of quiver representations. It turns out that all of them yield tensor products which essentially are the same as the point-wise tensor product. We solve the Clebsch-Gordan problem for all Dynkin quivers of type A, D and E6, and provide explicit descriptions of their respective representation rings. Furthermore, we investigate how the tensor product interacts with Galois coverings. The results obtained are used to solve the Clebsch-Gordan problem for all extended Dynkin quivers of type Ãn and the double loop quiver with relations βα=αβ=αn=βn=0.
|
2 |
On the Clebsch-Gordan problem for quiver representationsHerschend, Martin January 2008 (has links)
<p>On the category of representations of a given quiver we define a tensor product point-wise and arrow-wise. The corresponding Clebsch-Gordan problem of how the tensor product of indecomposable representations decomposes into a direct sum of indecomposable representations is the topic of this thesis.</p><p>The choice of tensor product is motivated by an investigation of possible ways to modify the classical tensor product from group representation theory to the case of quiver representations. It turns out that all of them yield tensor products which essentially are the same as the point-wise tensor product.</p><p>We solve the Clebsch-Gordan problem for all Dynkin quivers of type A, D and E<sub>6</sub>, and provide explicit descriptions of their respective representation rings. Furthermore, we investigate how the tensor product interacts with Galois coverings. The results obtained are used to solve the Clebsch-Gordan problem for all extended Dynkin quivers of type Ã<sub>n</sub> and the double loop quiver with relations βα=αβ=α<sup>n</sup>=β<sup>n</sup>=0.</p>
|
3 |
Problème inverse de Galois : critère de rigiditéAmalega Bitondo, François 08 1900 (has links)
Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis. / In this master thesis we study finite Galois extensions of C(x). We prove Riemann existence theorem. The notions of rigidity, weak rigidity, and rationality are developed. We obtain the rigidity criterion which enable us to realise some groups as Galois groups over Q. Many examples of ramification types are constructed.
|
Page generated in 0.0895 seconds