• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation / Contributions à la géométrie arithmétique en caractéristique mixte : relèvement de revêtements de courbes, géométrieanalytique non-archimédienne et représentation de Weil I-modulaire

Turchetti, Danièle 24 October 2014 (has links)
Dans cette thèse on étudie certains phénomènes d'interactions entre caractéristique positive et caractéristique nulle. Dans un premier temps on s'occupe du problème de relèvement locale d'actions de groupes. On y montre des conditions nécessaires pour l'existence de relèvement de certains actions du groupe Z/pZ x Z/pZ. Pour une action d'un groupe fini quelconque, on y étudie les arbres de Hurwitz, en montrant que chaque arbre de Hurwitz admet un plongement dans le disque unitaire fermé de Berkovich et que ses données de Hurwitz peuvent être décrites de façon analytique. Dans une deuxième partie nous construisons un analogue de la représentation de Weil à coefficients dans un anneau intègre, et nous montrons que cela satisfait les mêmes propriétés que dans le cas de coefficients complexes / In this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
2

Problème inverse de Galois : critère de rigidité

Amalega Bitondo, François 08 1900 (has links)
Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis. / In this master thesis we study finite Galois extensions of C(x). We prove Riemann existence theorem. The notions of rigidity, weak rigidity, and rationality are developed. We obtain the rigidity criterion which enable us to realise some groups as Galois groups over Q. Many examples of ramification types are constructed.

Page generated in 0.0562 seconds