Spelling suggestions: "subject:"galvanometer"" "subject:"galvanometers""
1 |
Entwicklung eines Lasertrackersystems mit Galvanometerscanner zur 3D-PositionsbestimmungWachten, Christian January 2009 (has links)
Zugl.: Freiburg (Breisgau), Univ., Diss., 2009
|
2 |
Reducing Inherent Deviations in Galvanometer Scanning Systems for Large Area ProcessingOrtega Delgado, Moisés Alberto 26 January 2017 (has links) (PDF)
Galvanometer laser machining is a well-established laser machining technique in which the laser beam is positioned on a working field by means of mirrors mounted in galvanometers. Nonetheless, new applications make necessary the development of innovative techniques for increasing the performance of such systems. Aside all the advantages of this technique like given resolution, repeatability and velocity, a limited working area is an important drawback.
In this thesis work, the limitations of different state-of-the-art schemes for increasing the working field of galvanometer laser machining systems are examined. The necessity of a new strategy for reducing present deviations introducing a vision system is established. The construction of an error vector and calculation of coordinate’s transformations to improve precision are presented. In this work, the “Arithmetic mean transformation”, “individual correction transformation”, “iterative inverse distance weighting transformation” and a stitching approach denominated “Auto-stitching” are presented and demonstrated as methods for reducing inherent deviations in galvanometer scanning systems for large area processing.
|
3 |
Reducing Inherent Deviations in Galvanometer Scanning Systems for Large Area ProcessingOrtega Delgado, Moisés Alberto 28 November 2016 (has links)
Galvanometer laser machining is a well-established laser machining technique in which the laser beam is positioned on a working field by means of mirrors mounted in galvanometers. Nonetheless, new applications make necessary the development of innovative techniques for increasing the performance of such systems. Aside all the advantages of this technique like given resolution, repeatability and velocity, a limited working area is an important drawback.
In this thesis work, the limitations of different state-of-the-art schemes for increasing the working field of galvanometer laser machining systems are examined. The necessity of a new strategy for reducing present deviations introducing a vision system is established. The construction of an error vector and calculation of coordinate’s transformations to improve precision are presented. In this work, the “Arithmetic mean transformation”, “individual correction transformation”, “iterative inverse distance weighting transformation” and a stitching approach denominated “Auto-stitching” are presented and demonstrated as methods for reducing inherent deviations in galvanometer scanning systems for large area processing.
|
4 |
Light Delivery In Turbid MediaHaylock, Thomas January 2011 (has links)
Light delivery and sample handling systems are essential for any high performance imaging application. The custom design for two such devices with medical imaging applications are presented. The first device, a galvanometer-stage combination, is for general use optical coherence tomography and can be configured to scan over a large range of sample sizes and types. The second device, constructed in parallel, a rotation-linear stage combination, has been carefully designed for a specific imaging task: assessing tumour margins. The design of the two devices is driven by operational requirements and although requirements vary greatly from application to application, there are several common parameters that must be considered for every system. In this thesis, parameters like total scan time, scan resolution, sampling rate, and sample type flexibility are analysed and are some of the primary factors that influence the viability of a system for further development. This work's contribution to medical imaging research is the design of two light delivery systems and an analysis process that can be applied to future iterations of scan systems.
The devices are shown to be flexible enough for use in test-bed systems, while providing the necessary functionality to meet the needs of medical histology and pathology. Controlling the light delivery and sample positioning of an imaging device adds important functionality to a scan system and is not a trivial task when high spatial-resolution scan spacing is required. The careful design of an imaging system to meet the unique requirements of the application enables better information and better resulting decision making. Advanced imagery provides new insights and perspectives to everyday scenes. It is these new perspectives that allow for re-evaluation and examination of problems with a fresh eye.
|
5 |
Design, Simulation and Implementation of High Precision Control Algorithms for a Galvanometer Laser ScannerTorres Bonet, Tomas 26 August 2014 (has links)
This thesis focuses on the theory, design, simulation and implementation of
several digital controllers for periodic signals on a laser scanning galvanometer. A model for the galvanometer was obtained and veri ed using closed
loop identi cation techniques. Using this model, controllers were designed
and simulated using MATLAB and then implemented on a custom FPGA
control processor with a focus on tracking performance. The types of controllers used were: an Iterative Learning Controller, an RST pole placement
controller, an Adaptive Feed-forward cancellation controller, a combined Iterative Learning and Adaptive Feed-forward cancellation controller and a
simple PID controller.
The simulated results were better than the experimental results because of
system noise and modelling uncertainties but the relative performance between each of the controllers was similar for both the simulation and experimental setup. The experimental results achieved were very good with one
controller reaching errors under 50 rad. / Graduate / 0537 / t_Torres_bonet@hotmail.com
|
6 |
Light Delivery In Turbid MediaHaylock, Thomas January 2011 (has links)
Light delivery and sample handling systems are essential for any high performance imaging application. The custom design for two such devices with medical imaging applications are presented. The first device, a galvanometer-stage combination, is for general use optical coherence tomography and can be configured to scan over a large range of sample sizes and types. The second device, constructed in parallel, a rotation-linear stage combination, has been carefully designed for a specific imaging task: assessing tumour margins. The design of the two devices is driven by operational requirements and although requirements vary greatly from application to application, there are several common parameters that must be considered for every system. In this thesis, parameters like total scan time, scan resolution, sampling rate, and sample type flexibility are analysed and are some of the primary factors that influence the viability of a system for further development. This work's contribution to medical imaging research is the design of two light delivery systems and an analysis process that can be applied to future iterations of scan systems.
The devices are shown to be flexible enough for use in test-bed systems, while providing the necessary functionality to meet the needs of medical histology and pathology. Controlling the light delivery and sample positioning of an imaging device adds important functionality to a scan system and is not a trivial task when high spatial-resolution scan spacing is required. The careful design of an imaging system to meet the unique requirements of the application enables better information and better resulting decision making. Advanced imagery provides new insights and perspectives to everyday scenes. It is these new perspectives that allow for re-evaluation and examination of problems with a fresh eye.
|
7 |
Inline Coherent Imaging Applied to Laser MicromachiningJi, YANG 30 April 2014 (has links)
Laser processing has the advantage of minimal sample contact and thus little tool wear over time compared to conventional machining. However, this leads to the difficulty of real-time depth monitoring and control. To help understand the process and achieve automation of laser micromachining, a coherent imaging technique adapted from spectral domain optical coherence tomography (SD-OCT) is applied “inline”with a machining laser to monitor the depth changing information. The axial resolution of the inline coherent imaging (ICI) system is 7–8 microns and the acquisition rate is up to 230 kHz. The capture time is as low as 1.5 microseconds.
3D laser machining usually requires ultrafast lasers and homogeneous materials. With ICI, a feedback system is developed for 3D sculpture suitable even for heterogeneous materials without any sophisticated material characterization. 3D patterns with sizes up to 1 mm × 1 mm × 0.2 mm are sculpted in bone and wood with a ps UV laser. 3D patterns with sizes up to 6 mm × 6 mm × 2 mm are sculpted in bone with a CW IR laser.
Many laser applications require high scan speed facilitated by scanning optics. The versatility of ICI is also demonstrated in a galvo-telecentric beam delivery system. ICI is used in a process of trench (as long as 10 mm) etching of steel to monitor the intrapulse and interpulse morphology changes as well as the sweep-to-sweep (up to 36 sweeps) depth changes. High scan speed (up to 375 mm/s) trench etching of silicon are also monitored and the parameter space is explored without destructive post-processing.
Motion during imaging capture time (>1.5 microseconds) may cause contrast degradation. To reduce the motion artifacts, preliminary experiments on stroboscopic ICI based on a kHz pulse repetition rate femtosecond laser are described. By “sampling” the motion of the machining front discretely with a “sampling time” as short as the imaging pulse duration, our results demonstrate that stroboscopic ICI is a promising way to improve the ICI contrast against motion artifacts. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2014-04-30 13:56:35.793
|
8 |
Laserový projektor / Laser ProjectorSvoboda, Pavel January 2015 (has links)
The aim of this thesis is to create a system, which draws the graphics with the help of a set laser project and eventually is able to synthetize several coloured rays and thus realise a multicolour drawing. The whole system is controlled by a Raspberry PI microcomputer and the data is sent to it from a PC via an Ethernet cable. The transmission of the projector device was identified and possible ways of improving the device were suggested. The results of this thesis allow creation of a multi-coloured vector picture, transferring it into the device and depiction on the project desktop. The whole device can therefore be used for example for the purpose of a presentation.
|
Page generated in 0.0492 seconds