• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preservação de mínimos locais de famílias de funcionais via Gama-convergência e aplicações

Pereira, Jamil Viana 14 October 2009 (has links)
Made available in DSpace on 2016-06-02T20:27:37Z (GMT). No. of bitstreams: 1 2630.pdf: 7158604 bytes, checksum: 27704d5db7d305fab95b698946f4d92c (MD5) Previous issue date: 2009-10-14 / Universidade Federal de Minas Gerais / (vide PDF)
2

Existência de soluções estacionárias estáveis para equações de reação-difusão com condição de fronteira de Neumann não-linear: condições necessárias e condições suficientes.

Moura, Renato José de 15 December 2004 (has links)
Made available in DSpace on 2016-06-02T20:27:40Z (GMT). No. of bitstreams: 1 TeseRJM.pdf: 817358 bytes, checksum: d24793e3f196b9f16b40acf7036bf817 (MD5) Previous issue date: 2004-12-15 / Financiadora de Estudos e Projetos / In this work we consider some nonlinear reaction-difusion equations with nonlinear Neumann boundary condition. The objective is to present conditions on the geometry of the domain, as well as on the reaction and diffusion terms, for the existence of stationary stable nonconstant solutions which develop internal and superficial transition layers. The main tools used are Gamma-convergence of functionals, variational techniques and results of dynamical systems in infinite dimension. / Neste trabalho consideramos algumas equações de reação-difusão não-lineares com condições de fronteira de Neumann não-lineares. O objetivo é apresentar condições sobre a geometria do domínio, bem como os coeficientes de reação e de difusão, para a existência de soluções estacionárias estáveis não-constantes que desenvolvem camadas de transição interna e superficial. Utilizamos como recursos principais a Gama-convergência de funcionais, técnicas variacionais e resultados de sistemas dinâmicos em dimensão infinita.
3

Estabilidade em equações de reação e difusão : interação entre difusibilidade e geometria em superfícies de revolução e um problema singularmente perturbado no caso de intersecção das raizes da equação degenerada

Sônego, Maicon 07 March 2013 (has links)
Made available in DSpace on 2016-06-02T20:27:40Z (GMT). No. of bitstreams: 1 4915.pdf: 644377 bytes, checksum: 9d13a91ba2735cf11f922800554915d1 (MD5) Previous issue date: 2013-03-07 / Universidade Federal de Sao Carlos / In this work we study two distinct problems. The first is a parabolic problem with variable diffusivity on surfaces of revolution. The objective is to find mechanisms of interaction between the diffusivity function and the geometry of the domain ensuring the existence of stationary stable nonconstant solution as well as non-existence. The second is a problem of reaction and diffusion singularly perturbed in the case of intersecting roots of the degenerate equation. We prove the existence and geometric profile of four families of stationary stable non-constant solutions to the parabolic equation. In both problems the main tools used are T-convergence theory and techniques of variational calculus. / Neste trabalho estudamos dois problemas distintos. O primeiro é um problema parabólico com difusibilidade variável sobre superfícies de revolução. O objetivo é encontrar mecanismos de interação entre a difusibilidade e a geometria do domínio que garantam a existência de soluções estacionárias estáveis não-constantes, assim como a não-existência. O segundo é um problema de reação e difusão singularmente perturbado no caso de intersecção das raízes da equação degenerada. Provamos a existência e o perfil geométrico de quatro famílias de soluções estacionárias estáveis não constantes. Para os dois problemas utilizamos como recursos principais a teoria de T- convergência e técnicas de cálculo variacional.
4

Mínimos locais de funcionais com dependência especial via Γ convergência: com e sem vínculo

Biesdorf, João 30 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:27:39Z (GMT). No. of bitstreams: 1 3744.pdf: 1323892 bytes, checksum: 71a7a7180d61db167b8cbec4db2bbe8b (MD5) Previous issue date: 2011-05-30 / Universidade Federal de Sao Carlos / We address the question of existence of stationary stable solutions to a class of reaction-diffusion equations with spatial dependence in 2 and 3-dimensional bounded domains. The approach consists of proving the existence of local minimizer of the corres-ponding energy functional. For existence, it was enough to give sufficient conditions on the diffusion coefficient and on the reaction term to ensure the existence of isolated mi¬nima of the Γlimit functional of the energy functional family. In the second part we take the techniques developed in the first part to minimize functional in 2 and 3-dimensional rectangles, with and without constraint, solving in a more general form this problem, which was originaly proposed in 1989 by Robert Kohn and Peter Sternberg. / Na primeira parte deste trabalho, abordamos a existência de soluções estacioná-rias estáveis para uma classe de equações de reação-difusão com dependência espacial em domínios limitados 2 e 3-dimensionais. Esta abordagem foi feita via existência de míni¬mos locais dos funcionais de energia correspondentes. Para tal, foi suficiente encontrar condições no coeficiente de difusão e no termo de reação que garantam existência de míni¬mos isolados do funcional Γlimite da família de funcionais de energia. Na segunda parte, aproveitamos as técnicas desenvolvidas na primeira parte para minimizar funcionais em retângulos e paralelepípedos, com e sem vínculo, resolvendo de forma bem mais geral este problema, originalmente proposto em 1989 por Robert Kohn e Peter Sternberg.

Page generated in 0.0432 seconds