• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genotipagem de alelos S em macieira e sua utilização como ferramenta auxiliar ao melhoramento genético / Genotyping of S alleles in apple tree and its use as an auxiliary tool for genetic improvement

Brancher, Thyana Lays 02 February 2017 (has links)
Submitted by Claudia Rocha (claudia.rocha@udesc.br) on 2018-03-01T12:12:19Z No. of bitstreams: 1 PGPV17MA218.pdf: 1720230 bytes, checksum: 6b5c28d9052e3150143609b5794ee96a (MD5) / Made available in DSpace on 2018-03-01T12:12:19Z (GMT). No. of bitstreams: 1 PGPV17MA218.pdf: 1720230 bytes, checksum: 6b5c28d9052e3150143609b5794ee96a (MD5) Previous issue date: 2017-02-02 / PROMOP / CAPES / Due to the gametophytic self-incompatibility (GSI), the occurrence of cross-pollination between genetically compatible plants is necessary for the naturally fructification of apple trees (Malus domestica Borkh.). The GSI is governed by the multiallelic locus called S, which encodes a family of RNases thats act on the pistil and prevents the formation of the pollen tube when the S alleles presented in the pollen grain is the same as that is presented in the diploid tissue of the pistil. From the identification of the S alleles of plants of interest it is possible to guide the combinations between parents to obtain segregant populations and to predict the efficiency of apple tree genotypes when they are used as pollinators in commercial orchards. The objectives of this dissertation were to validate the use of DNA markers in the identification of the genetic constitution of the S locus of apple tree genotypes, as well as the definition of pollinators genotypes to be adopted in commercial orchards, serving as an auxiliary tool for the apple breeding. The study of the segregation of the S alleles carried out in segregating populations of apple trees by DNA markers (Chapter 2); the locus S of 28 genotypes of apple trees were analyzed by DNA markers and the genetic dissimilarity analysis was done based on the characterization of the same genotypes for based on the minimum descriptors required for the protection of new cultivars (Chapter 3); and the determination of the pollinators genotypes for three apple was done based on the genotyping of the S alleles associated with cross testing (Chapter 4). In the study of segregation of S alleles in segregating populations, the progeny of the cross between Fred Hough (S5S19) vs. Monalisa (S2S10) followed the expected segregation ratio for genotype compatibility: 1:1:1:1. In the other population evaluated, the same pair of S alleles, S3S5, were identified in both parents (M-11/01 and M-13/91), and the progeny showed the same genotype. In 26 of the 28 genotypes evaluated, both alleles S were identified, and in the remaining two genotypes only one allele was identified in each genotype. The average dissimilarity of the 28 genotypes obtained by the morphoagronomic characterization was 35 %. Considering the total genetic compatibility between the genotypes and the five major dissimilarities obtained, 15 crosses were suggested to increase the genetic base of the Epagri's Genetic Apple Breeding Program. Regarding the selection of pollinators, the field pollination tests did not show a significant difference between the cultivars and their respective pollinators tested for characters the fruit set and seed number, but when the S alleles present in each of the genotypes, were identified the presence of semi-compatibility cases between them. This fact can be explain by the high concentration of pollen grains applied on the pistil of the flowers on artificial pollination, which may mask the existing semi-compatibility. Considering the results obtained in this study, DNA markers can be used to identify the locus S genotype in apple trees as an auxiliary tool to the Epagri's Genetic Apple Breeding Program, both for the definition of combinations between parents for the formation of segregant populations as to chose pollinators to fruit-producing cultivars to be adopted in commercial orchards / Devido a autoincompatibilidade gametofítica (AIG), para a formação de frutos em plantas de macieira (Malus domestica Borkh.) é necessária a ocorrência de polinização cruzada entre plantas geneticamente compatíveis. A AIG é governada pelo loco multialélico S, que codifica para uma família de RNases atuantes no pistilo da planta e impede a formação do tubo polínico quando os alelos S presentes no grão de pólen forem iguais àqueles presentes no tecido diploide do pistilo. A partir da identificação dos alelos S de plantas de interesse é possível orientar as combinações entre genitores para a obtenção de populações segregantes via hibridações dirigidas e prever a eficiência de genótipos de macieira quando utilizados como polinizadores em pomares comerciais. Os objetivos dessa dissertação foram validar o uso de marcadores de DNA na identificação da constituição genética do loco S de genótipos de macieira e na definição de genótipos polinizadores a serem adotados em pomares comerciais, servindo como ferramenta auxiliar ao melhoramento genético de macieira. Realizou-se: o estudo da segregação dos alelos S em populações segregantes de macieira mediante genotipagem via marcadores de DNA (Capítulo 2); a genotipagem dos alelos S de 28 genótipos elite de macieira via marcadores de DNA e análise de dissimilaridade genética com base na caracterização quanto aos descritores mínimos requisitados para a proteção de novas cultivares (Capítulo 3); e a determinação dos genótipos polinizadores para três cultivares de macieira baseando-se na genotipagem dos alelos S associada à realização de cruzamentos teste a campo (Capítulo 4). No estudo da segregação dos alelos S em populações segregantes, a progênie do cruzamento entre Fred Hough (S5S19) vs. Monalisa (S2S10) apresentou a proporção de segregação esperada para compatibilidade entre genótipos: 1:1:1:1. Na segunda população avaliada, em ambos os genitores (M-11/01 e M-13/91) foi identificado o mesmo par de alelos S: S3S5, sendo que a progênie apresentou esse mesmo genótipo. Mediante a análise molecular, em 26 dos 28 genótipos avaliados foram identificados ambos os alelos do loco S, sendo que nos dois restantes apenas um alelo foi identificado em cada genótipo. A dissimilaridade média dos 28 genótipos identificada pela caracterização morfoagronômica foi de 35 %. Considerando a compatibilidade genética total entre os genótipos e as cinco maiores dissimilaridades obtidas, foram sugeridos 15 cruzamentos para ampliação da base genética do Programa de Melhoramento Genético da Epagri. Quanto a seleção de polinizadoras, os testes de polinização a campo não demonstraram diferença significativa entre as cultivares e suas respectivas polinizadoras para as características avaliadas, porém quando os alelos S foram identificados constatou-se a presença de casos de semicompatibilidade entre alguns dos genótipos avaliados. Sugere-se que a não identificação dos genótipos semicompatíveis ocorre devido a alta concentração de grãos de pólen aplicada sobre o pistilo das flores via polinização artificial das cultivares, que pode mascarar a semicompatibilidade existente. Considerando os resultados obtidos nesse estudo, a utilização de marcadores de DNA para identificação do genótipo do loco S em macieira pode ser empregada como ferramenta auxiliar ao programa de melhoramento genético de macieira da Epagri, tanto para a definição de combinações entre genitores para a formação de populações segregantes que serão alvo de seleção quanto para a escolha de polinizadoras geneticamente compatíveis com as cultivares produtoras de frutos a serem adotados em pomares comerciais, minimizando as perdas de produção em pomares comerciais devido a semicompatibilidade genética ou incompatibilidade entre os genótipos de macieira (cultivar copa x polinizadora)
2

Caracterização anatômico-fisiológica e molecular da compatibilidade reprodutiva de ameixeiras japonesa / Anatomical-physiological and molecular characterization of the reproductive compatibility of Japanese plum

Conti, Daniela de 15 February 2012 (has links)
Made available in DSpace on 2014-08-20T13:59:15Z (GMT). No. of bitstreams: 1 dissertacao_daniela_de_conti.pdf: 1033668 bytes, checksum: 84993fae9dbf6d00292f67eaacda30fb (MD5) Previous issue date: 2012-02-15 / The Japanese plum (Prunus salicina Lindl.) is a fruit of great prominence worldwide. In Brazil, one of the most widely cultivated species of plum, because it presents climatic conditions favorable to its cultivation. However, some factors limit the increase in domestic production of plum trees, among them stands out the gametophytic self-incompatibility, due to the presence of a multiallelic codominant locus, containing the so-called S-alleles. Thus, the objective of this study was to identify physiologically and molecularly S-alleles of Japanese plum cultivars related to gametophytic self-incompatibility. For physiological characterization were carried out controlled pollination experiments in the experimental field of Embrapa, Clima Temperado (Pelotas/RS) and the pollination in vivo in laboratory, three cultivars of Japanese plum (América, Gulf Rubi and Gulf Blaze) which were evaluated fruit set and pollen tube growth (CTP), respectively. For molecular characterization, experiments were performed in the Laboratory of Plant Tissue Culture and Molecular Characterization, (UFPel / RS). To this end, we analyzed 19 Japanese plum cultivars by Polymerase Chain Reaction (PCR) with two pairs of specific primers for amplification of S-alleles. Crossings 'Gulf Blaze' x Gulf Rubi' Gulf Rubi x 'Gulf Rubi' and 'Gulf Rubi' x 'Gulf Blaze' had a fruit set of 11.36%, 3.84% and 9.94% respectively. In vivo pollination CTP reached the egg or ovarian in these crosses, with the exception of self-pollination of 'Gulf Rubi'. There was no fruit set in the field, self-pollination in 'América' and 'Gulf Blaze' and crossing 'América x' Pluma 7 '. The CTP in these crosses did not reach the egg, with the exception of self-pollination of 'Gulf Blaze'. Only the cross between 'América' x 'Pluma 7' are incompatible, and America is a self-incompatible cultivar. In amplification of S-alleles was possible to obtain the effective characterization of alleles-S of cultivars studies, as well as, the choice of pollinating more compatible with the cultivars producing. The cultivars América and Santa Rosa; Blood Plum, Wickson, Rosa Mineira, Estrela Púrpura and Planta 21 showed incompatibility between them. / A ameixeira japonesa (Prunus salicina Lindl.) é uma frutífera de grande destaque mundialmente. No Brasil, é a espécie de ameixeira mais cultivada, pois apresenta grande número de cultivares adaptadas as diferentes condições climáticas das regiões onde é cultivada. Porém, alguns fatores limitam o aumento da produção nacional de ameixeiras, entre eles destaca-se a autoincompatibilidade gametofítica, devido à presença de um loco multialélico, contendo os denominados alelos-S. Diante disso, o objetivo deste trabalho foi identificar fisiologicamente e molecularmente os alelos-S de cultivares de ameixeira japonesa relacionados à autoincompatibilidade gametofítica. Para a caracterização fisiológica, realizaram-se experimentos de polinização controlada no campo experimental da Embrapa Clima Temperado (Pelotas/RS) e polinização in vivo, em laboratório, de três cultivares de ameixeira japonesa (América, Gulf Blaze e Gulf Rubi) onde foram avaliados a frutificação efetiva e o crescimento do tubo polínico (CTP), respectivamente. Para a caracterização molecular, os experimentos foram realizados no Laboratório de Cultura de Tecidos de Plantas Caracterização Molecular, (UFPEL/RS). Para tal fim, foram analisadas 19 cultivares de ameixeira japonesa, por meio de Reação em Cadeia da Polimerase (PCR) com dois pares de primers específicos para amplificação de alelos-S. Nos estudos de compatibilidade reprodutiva, a cv. América apresentou alto fruit set quando polinizada com as cvs. Rosa Mineira (26,7%), Amarelinha (8,7%) e Reubennel (12,7%). Os cruzamentos Gulf Blaze x Gulf Rubi , Gulf Rubi x Gulf Rubi e Gulf Rubi x Gulf Blaze obtiveram um fruit set de 11,36%, 3,84% e 9,94%, respectivamente. Na polinização in vivo o CTP atingiu o óvulo ou ovário nesses cruzamentos, com exceção da autopolinização da Gulf Rubi . Não houve frutificação efetiva, no campo, na autopolinização América e Gulf Blaze e no cruzamento América x Pluma 7 . O CTP nesses cruzamentos não chegou a atingir o óvulo, com exceção da autopolinização da Gulf Blaze . Apenas os cruzamentos América x Pluma 7 são incompatíveis e a cultivar América é autoincompatível. Na amplificação de alelos-S, foi possível obter a efetiva caracterização de alelos-S das cultivares estudadas, bem como, a escolha das polinizadoras mais compatíveis com as cultivares produtoras. Verificou-se que as cultivares América e Santa Rosa; Blood Plum, Wickson, Rosa Mineira, Estrela Púrpura e Planta 21, apresentaram incompatibilidade entre si.
3

Destins des S-RNases et interactions moléculaires dans le tube pollinique dans le cadre de l’auto-incompatibilité gamétophytique chez Solanum chacoense

Soulard, Jonathan 01 1900 (has links)
L’auto-incompatibilité (AI) est une barrière reproductive prézygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systèmes d’AI peuvent prévenir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamétophytique, le génotype du pollen détermine son propre phénotype d’incompatibilité, et dans ce système, les déterminants mâles et femelles de l’AI sont codés par un locus multigénique et multi-allélique désigné le locus S. Chez les Solanaceae, le déterminant femelle de l’AI est une glycoprotéine stylaire extracellulaire fortement polymorphique possédant une activité ribonucléase et désignée S-RNase. Les S-RNases montrent un patron caractéristique de deux régions hypervariables (HVa et HVb), responsables de leur détermination allélique, et cinq régions hautement conservées (C1 à C5) impliquées dans l’activité catalytique ou la stabilisation structurelle de ces protéines. Dans ce travail, nous avons investigué plusieurs caractéristiques des S-RNases et identifié un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre première étude était l’élucidation du rôle de la région C4 des S-RNases. Afin de tester l’hypothèse selon laquelle la région C4 serait impliquée dans le repliement ou la stabilité des S-RNases, nous avons généré un mutant dans lequel les quatre résidus chargés présents en région C4 furent remplacés par des résidus glycine. Cette protéine mutante ne s’accumulant pas à des niveaux détectables, la région C4 semble bien avoir un rôle structurel. Afin de vérifier si C4 est impliquée dans une liaison avec une autre protéine, nous avons généré le mutant R115G, dans lequel un acide aminé chargé fût éliminé afin de réduire les affinités de liaison dans cette région. Ce mutant n’affectant pas le phénotype de rejet pollinique, il est peu probable que la région C4 soit impliquée dans la liaison des S-RNases avec un ligand ou leur pénétration à l’intérieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul résidu lysine conservé parmi toutes les S-RNases fût remplacé par un résidu arginine, fût généré afin de vérifier si cette lysine était un site potentiel d’ubiquitination des S-RNases. Toutefois, la dégradation des S-RNases ne fût pas inhibée. Ces résultats indiquent que C4 joue probablement un rôle structurel de stabilisation des S-RNases. Dans une seconde étude, nous avons analysé le rôle de la glycosylation des S-RNases, dont un site, en région C2, est conservé parmi toutes les S-RNases. Afin d’évaluer la possibilité que les sucres conjugués constituent une cible potentielle d’ubiquitination, nous avons généré une S11-RNase dont l‘unique site de glycosylation en C2 fût éliminé. Ce mutant se comporte de manière semblable à une S11-RNase de type sauvage, démontrant que l’absence de glycosylation ne confère pas un phénotype de rejet constitutif du pollen. Afin de déterminer si l’introduction d’un sucre dans la région HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons généré un second mutant comportant un site additionnel de glycosylation dans la région HVa et une troisième construction qui comporte elle aussi ce nouveau site mais dont le site en région C2 fût éliminé. Le mutant comportant deux sites de glycosylation se comporte de manière semblable à une S11-RNase de type sauvage mais, de manière surprenante, le mutant uniquement glycosylé en région HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylée de ce mutant constitue un allèle à double spécificité, semblable à un autre allèle à double spécificité préalablement décrit. Il est intéressant de noter que puisque ce phénotype n’est pas observé dans le mutant comportant deux sites de glycosylation, cela suggère que les S-RNases ne sont pas déglycosylées à l’intérieur du pollen. Dans la dernière étude, nous avons réalisé plusieurs expériences d’interactions protéine-protéine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons démontré que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisée sur résine concanavaline A. Des analyses de type pull-down utilisant la protéine eEF1A de S. chacoense étiquetée avec GST confirment cette interaction. Nous avons aussi montré que la liaison, préalablement constatée, entre eEF1A et l’actine est stimulée en présence de la S11-RNase, bien que cette dernière ne puisse directement lier l’actine. Enfin, nous avons constaté que dans les tubes polliniques incompatibles, l’actine adopte une structure agrégée qui co-localise avec les S-RNases. Ces résultats suggèrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altération du cytosquelette d’actine observée lors des réactions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles à l’intérieur du tube pollinique, ce mécanisme pourrait expliquer pourquoi des quantités minimales ou « seuils » de S-RNases sont nécessaires au déclenchement des réactions d’AI. / Self-incompatibility (SI) is a prezygotic reproductive barrier that allows the pistil of a flower to specifically reject their own (self-) pollen. SI systems can help prevent self-fertilization and avoid inbreeding. In gametophytic SI (GSI), the genotype of the pollen determines its breeding behaviour and in this system both female and male specificity determinants of SI are under the control of a multigenic and multiallelic locus called the S-locus. In Solanaceae, the female determinant of SI is a highly polymorphic stylar-expressed extracellular glycoprotein with RNase activity called the S-RNase. S-RNases show a distinct pattern of two hypervariable (HVa and HVb) regions, responsible for their allelic specificity, and five highly conserved regions (C1 to C5) thought to be involved in either the catalytic activity or the structural stabilization of the protein. In this work, we analyzed and characterized several conserved features of the S-RNases and also identified a potential novel S-RNase interactant in Solanum chacoense. The aim of our first study was to investigate the role of the C4 region of S-RNases. To test the hypothesis that the C4 region may be involved in S-RNase folding or stability, we examined a mutant in which the four charged residues in the C4 region were replaced with glycine. This mutant did not accumulate to detectable levels in styles, supporting a structural role for C4. To test the possibility that C4 might be involved in binding another protein, we prepared an R115G mutant, in which a charged amino acid was eliminated to reduce any potential binding to this region. This mutant had no effect on the pollen rejection phenotype of the protein, and thus C4 is likely not involved in either ligand binding or S-RNase entry inside pollen tubes. Finally, a K113R mutant, in which the only conserved lysine residue in all the S-RNases was replaced with arginine, was generated to test if this residue was an S-RNase ubiquitination site. However, S-RNase degradation was not disrupted in this mutant. Taken together, these results indicate that the C4 region likely plays a structural role. In a second study, we analyzed the role of S-RNase glycosylation. All S-RNases share a conserved glycosylation site in the C2 region. To test the possibility that the sugar residues might be a target for ubiquitination, a transgenic S11-RNase lacking its single glycosylation site was examined. This construct behaved similarly to a wild type S11-RNase, demonstrating that the lack of glycosylation does not confer constitutive pollen rejection. To determine if the introduction of an N-linked glycan in the HVa region would affect pollen rejection, a construct containing a second N-glycosylation site inside the HVa region of the S11-RNase and a construct containing only that N-glycosylation site inside the HVa region were prepared. The first construct rejected S11 pollen normally, but surprisingly, plants expressing the construct lacking the C2 glycosylation site rejected both S11 and S13 pollen. We propose that the non-glycosylated form is a dual specific allele, similar to a previously described dual-specific allele that also had amino acid replacements in the HV regions. Interestingly, this phenotype is not observed in the mutant containing two glycosylation sites, which suggests that the sugar residues are not removed during S-RNase entry into the pollen. In the final study, S-RNase-binding assays were performed with pollen extracts to detect potential interacting proteins. We found that concanavalin A-immobilized S11-RNase bound eEF1A, a component of the eukaryotic translational machinery. This interaction was validated by pull-down experiments using a GST-tagged S. chacoense eEF1A. We also found that a previously documented actin binding to eEF1A was markedly increased in the presence of S-RNases, although S-RNases alone do not bind actin. Lastly, we observed that actin in incompatible pollen tubes has an unusual aggregated form which also co-labels with S-RNases. This suggests that binding between S-RNases and eEF1A could provide a potential functional link between the S-RNase and the alteration of the actin cytoskeleton that occurs during the SI reaction. Furthermore, if eEF1A binding to S-RNases acted to titrate the amount of free S-RNase in the pollen tube, this binding may help explain the threshold phenomenon, where a minimum quantity of S-RNase in the style is required to trigger the SI reaction.
4

Destinée des S-RNases dans les tubes polliniques lors des croisements compatibles et incompatibles

Boivin, Nicolas 08 1900 (has links)
L’auto-incompatibilité (AI) est la capacité génétiquement déterminée d’une plante fertile de rejeter son propre pollen. Chez les Solanacées l’AI dépend des éléments d’un locus fort complexe (locus S) multigénique. L’élément du locus-S exprimé dans le pistil est une ribonucléase (S-RNase) dont le rôle est de dégrader l’ARN chez le pollen self, tandis que l’élément du locus S exprimé dans le pollen est un ensemble de protéines du type F-box, qui sont normalement impliquées dans la dégradation des protéines. Cependant, comment les S-RNases self restent actives lors des croisements incompatibles et comment les S-RNases non-self sont inactivées lors des croisements compatibles ce n’est encore pas clair. Un modèle propose que les S-RNases non-self soient dégradées lors des croisements compatibles. Un autre modèle propose que toutes les S-RNases, self et non-self, soient d'abord séquestrées à l’intérieur d’une vacuole, et elles y resteraient lors des croisements compatibles. Lors de croisements incompatibles, par contre, elles seraient relâchées dans le cytoplasme, où elles pourront exercer leur action cytotoxique. Notre étude tente de répondre à ces questions. Notamment, nous cherchons à mettre en évidence la localisation vacuolaire et/ou cytoplasmique des S-RNases et leur concentration par immunolocalisation, en utilisant un anticorps ciblant la S11-RNase de Solanum chacoense et la microcopie électronique à transmission. Nos résultats montrent que la densité de marquage observée pour les S-RNases cytoplasmiques est significativement plus haute dans les tubes incompatibles que dans ceux compatibles ce qui nous indique que pour qu’un tube pollinique soit compatible il doit contenir une faible densité de S-RNase cytoplasmique. / Self-incompatibility (SI) is a widespread genetic device used by flowering plants to reject their own pollen, and thus to avoid inbreeding. This cell-cell recognition mechanism is mediated by molecular interactions between gene products expressed in the pollen and those expressed in specialized cells of the pistil. The genetic determinants of the system are produced from a highly complex multigenic S-locus with multiple S-haplotypes, although other genes outside the S-locus also contribute to the phenomenon in a non-allele specific manner. SI discriminates between self and non-self pollen, as the former will be rejected (incompatible cross), whereas the latter will be allowed to accomplish fertilization (compatible cross). In the Solanaceae (to which Solanum chacoense belongs) the pistillar determinant to SI is an extremely polymorphic stylar extracellular S-RNase, whereas the pollen determinant involves the collaborative action of several members of the F-box family (SLF or S-locus F-box). This has led to the hypothesis that during compatible crosses, ubiquitin-mediated degradation of non-self S-RNases takes place (degradation model). However, it has also been found that non-self S-RNases appear to be sequestered in the vacuole during compatible crosses (sequestration model). The objective of our study was to discriminate between these two models by using immunolocalization techniques and transmission electron microscopy. We have found that the concentration of S-RNases is significantly higher in incompatible pollen tubes than in compatible ones.
5

Destinée des S-RNases dans les tubes polliniques lors des croisements compatibles et incompatibles

Boivin, Nicolas 08 1900 (has links)
L’auto-incompatibilité (AI) est la capacité génétiquement déterminée d’une plante fertile de rejeter son propre pollen. Chez les Solanacées l’AI dépend des éléments d’un locus fort complexe (locus S) multigénique. L’élément du locus-S exprimé dans le pistil est une ribonucléase (S-RNase) dont le rôle est de dégrader l’ARN chez le pollen self, tandis que l’élément du locus S exprimé dans le pollen est un ensemble de protéines du type F-box, qui sont normalement impliquées dans la dégradation des protéines. Cependant, comment les S-RNases self restent actives lors des croisements incompatibles et comment les S-RNases non-self sont inactivées lors des croisements compatibles ce n’est encore pas clair. Un modèle propose que les S-RNases non-self soient dégradées lors des croisements compatibles. Un autre modèle propose que toutes les S-RNases, self et non-self, soient d'abord séquestrées à l’intérieur d’une vacuole, et elles y resteraient lors des croisements compatibles. Lors de croisements incompatibles, par contre, elles seraient relâchées dans le cytoplasme, où elles pourront exercer leur action cytotoxique. Notre étude tente de répondre à ces questions. Notamment, nous cherchons à mettre en évidence la localisation vacuolaire et/ou cytoplasmique des S-RNases et leur concentration par immunolocalisation, en utilisant un anticorps ciblant la S11-RNase de Solanum chacoense et la microcopie électronique à transmission. Nos résultats montrent que la densité de marquage observée pour les S-RNases cytoplasmiques est significativement plus haute dans les tubes incompatibles que dans ceux compatibles ce qui nous indique que pour qu’un tube pollinique soit compatible il doit contenir une faible densité de S-RNase cytoplasmique. / Self-incompatibility (SI) is a widespread genetic device used by flowering plants to reject their own pollen, and thus to avoid inbreeding. This cell-cell recognition mechanism is mediated by molecular interactions between gene products expressed in the pollen and those expressed in specialized cells of the pistil. The genetic determinants of the system are produced from a highly complex multigenic S-locus with multiple S-haplotypes, although other genes outside the S-locus also contribute to the phenomenon in a non-allele specific manner. SI discriminates between self and non-self pollen, as the former will be rejected (incompatible cross), whereas the latter will be allowed to accomplish fertilization (compatible cross). In the Solanaceae (to which Solanum chacoense belongs) the pistillar determinant to SI is an extremely polymorphic stylar extracellular S-RNase, whereas the pollen determinant involves the collaborative action of several members of the F-box family (SLF or S-locus F-box). This has led to the hypothesis that during compatible crosses, ubiquitin-mediated degradation of non-self S-RNases takes place (degradation model). However, it has also been found that non-self S-RNases appear to be sequestered in the vacuole during compatible crosses (sequestration model). The objective of our study was to discriminate between these two models by using immunolocalization techniques and transmission electron microscopy. We have found that the concentration of S-RNases is significantly higher in incompatible pollen tubes than in compatible ones.

Page generated in 0.1167 seconds