Spelling suggestions: "subject:"samma ray detectors"" "subject:"gamma ray detectors""
21 |
Innovative scintillating optical fibers for detecting/monitoring gamma radiationJayaprakash, Ashwini. January 2006 (has links)
Thesis (M.S.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
|
22 |
The design of a mobile synthetic aperture collimated gamma detector for passive HEU sourcesChin, Michael Raymond 13 January 2014 (has links)
This thesis covers the individual work of Michael Chin as part of the sponsored research project funded by the U.S. State Department in support of a computational design of a "Mobile Pit Verification System" (MPVS), a mobile “drive by” passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes. The MPVS system is intended to enable a comprehensive, rapid verification and validation of stored nuclear weapon core physics packages containing SNM, or so-called “weapon pits,” in weapon materials and stockpile storage facilities. The MPVS platform is designed to move at a constant speed and accumulate a signal for each stored weapon pit container. The gamma detector was selected to be a 4 × 4 × 8 cubic inch CsI detector while the neutron detector array designed for the “Transport Simulation and Validation of a Synthetic Aperture SNM Detection System (“T-SADS”) project was used in conjunction with this work; T-SADS was a 3 year project funded by DOE-NNSA which was completed on May 2013.
The computational design effort for this project was completed in April 2013, and leveraged novel computational radiation transport methods, algorithms, and SNM identification methods, including a synthetic aperture collection approach, and a new gamma ratio methodology for distinguishing between naturally occurring radiation materials and weapon class SNM materials. Both forward and adjoint transport methods were utilized to characterize the adjoint reaction rate as a function of inter-source spacing, collimation thickness, linear and angular field of view, source age, source type, source geometry, and mobile platform speed. The integrated count was then compared with background radiation and the associated probabilities of detection and false alarm were then computed.
Publications resulting from this research were published in PHYSOR 2012, presented at the 53rd annual Proceedings of the INMM, and at the Mathematics & Computation 2013 Conference.
|
23 |
Response of NaI(T1) detectors in geophysical applicationsTitus, Nortin P. 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2005. / Some digitised pages may appear illegible due to the condition of the original hard copy. / ENGLISH ABSTRACT: Airborne gamma-ray spectrometry is used for exploration and environmental monitoring over large areas. Such datasets of 7-ray are acquired using large 16l NaI(T1) detector
crystals mounted in an aircraft. The response of these detectors to naturally occurring
radioactive isotopes is a function of detector volume, efficiency and resolution. This response
is modelled using the Monte Carlo method. A photon-electron transport computer
code, NIPET, is written to calculate the intrinsic efficiency and photofraction of these
large prismatic crystals. The intrinsic efficiency indicates the number of incident photons
that interact in some way with the detector resulting in a deposition of energy in the
crystal. The photofraction, on the other hand, indicates how many of these photons that
impinge on the detector are actually recorded with their full initial energy. This study
presents explicity calculated photofraction values for 16l NaI(Tl) crystals. Comparison of
these new values, calculated with this computer program, with that of published values
for small 3" x 3" crystals shows good agreement. However, for large crystals, the calculated
values differ from those in the literature by almost 15%. The study also finds that
for the gamma-ray energy range between 0.2 - 3.0 MeV, these detectors have an intrinsic
efficiency above 90%, whereas the photofraction values range from 80% for low energy
photons to above 40% for high energy photons in the case of large crystals. / AFRIKAANSE OPSOMMING: Lug gamma-straal spektroskopie is nuttig vir eksplorasie en omgewings ondersoeke oor
groot areas. Metings word tipies gedoen met 16l NaI(T1) detektors wat monteer is in ’n
vliegtuig. Die respons van hierdie detektors ten opsigte van natuurlike radioaktiewe isotope
is ’n funksie van detektorvolume, doeltreffendheid en oplosvermoë. Hierdie respons
word gemodeleer deur gebruik te maak van ’n Monte Carlo tegniek. ’n Rekenaarprogram,
NIPET, is geskryf om die intrinsieke doeltreffendheid en fotofraksie vir hierdie groot prismatiese
kristalle te bereken. Die intrinsieke doeltreffendheid dui die breukdeel van die
invallende fotone aan wat ’n interaksie ondergaan binne die detektor kristal en sodoende
energie deponeer. Die fotofraksie, daarenteen, dui die breukdeel invallende fotone aan
wat absorbeer word deur die kristal met hul voile invallende energie. In hierdie tesis
word eksplisiete fotofraksiewaardes vir 16l NaI(T1) kristale bereken. Goeie ooreenstemming
word gevind tussen fotofraksie waardes bereken met hierdie program en die waardes
gepubliseer in die literatuur vir klein 3" x 3" kristalle. Vir groter kristalle is daar egter
swakker ooreenstemming. Berekende fotofraksie waardes verskil met 15% van die waardes
in die literatuur. Daar word ook bevind dat vir gamma-energie tussen 0.2 - 3.0 MeV, die
intrinsieke doeltreffendheid vir hierdie tipe detektors bo 90% is en dat fotofraksiewaardes
wissel tussen 80% vir lae energie tot bo 40% vir hoë foton energie.
|
24 |
Difúze přirozených defektů a příměsí v CdTe/CdZnTe / Diffusion of native defects and impurities in CdTe/CdZnTeŠedivý, Lukáš January 2012 (has links)
Title: Diffusion of native defects and impurities in CdTe/CdZnTe. Author: Lukáš Šedivý Author's e-mail address: luky.sedivy@seznam.cz Department: Institute of Physics of Charles University Supervisor: Doc. Ing. Eduard Belas, CSc. Supervisor's e-mail address: belas@karlov.mff.cuni.cz Abstract: In this thesis, the influence of structural defects on the electrical and de- tection characteristics of CdTe material was investigated. The performed research fo- cused on the reduction of structural defects in the material by annealing in Cd or Te vapor, while preserving acceptable features for X-ray and γ-ray detection. The mate- rial was characterized by measurement of the electrical resistivity and concentration and mobility of free carriers. Tellurium and cadmium inclusions were studied using infrared microscope. The static and dynamic properties of defect structures at high temperatures and de- fined Cd pressures was investigated, as well, and chemical diffusion coeficients describing the dynamic properties of these defects were experimentally determined. Keywords: monocrystal CdTe, structural defects in semiconductors, annealing in Cd or Te, chemical diffusion coefficient, γ-ray detectors. 1
|
25 |
Vliv hlubokých hladin na transport náboje v CdTe a CdZnTe / Influence of Deep Levels on Charge Transport in CdTe and CdZnTeDědič, Václav January 2014 (has links)
CdTe and CdZnTe are promising materials for room temperature semiconductor X-ray and gamma ray detectors. The accumulation of a space charge at deep energy levels due to a band bending at contacts with Schottky barriers and due to trapped photogenerated charge may result in time dependent change of charge collection efficiency in CdTe and CdZnTe detectors known as polarization effect. This thesis is mainly focused on a study of electric field profiles in detectors under dark and high photon flux conditions simulating detector operation using crossed polarizers technique exploiting the electro-optic (Pockels) effect. It also deals with a study of deep levels responsible for the polarization and influence of contact metals on charge accumulation. Several experimental results are supported by theoretical simulations. The measurements were performed on three sets of samples equipped with different contact metals (Au, In) cut from three different n-type CdTe and CdZnTe materials. Energy levels were detected using methods based on the Pockels effect and discharge current measurements. Detailed study of internal electric field profiles has revealed a fundamental influence of near midgap energy levels related to crystal defects and contact metals on the polarization in semiconductor detectors under high radiation...
|
26 |
Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET ApplicationsFreire López-Fando, Marta 07 September 2023 (has links)
Tesis por compendio / [ES] La Tomografía por Emisión de Positrones (PET) es una potente técnica de imagen que proporciona mediante el uso de radiofármacos específicos medidas cuantitativas de los procesos biológicos y fisiológicos que tienen lugar en el organismo a nivel molecular. Las imágenes PET proporcionan información funcional que permite el diagnóstico precoz y el seguimiento personalizado del tratamiento terapéutico. La PET tiene aplicaciones en diversas áreas clínicas y de investigación, como la oncología, la neurología o la cardiología, entre otras. Los esfuerzos por mejorar las prestaciones de los sistemas PET se centran en aumentar su sensibilidad y calidad de imagen, lo que permite una evaluación clínica más precisa.
En las imágenes PET, se inyecta al paciente un radiotrazador marcado con un radionúclido emisor de positrones que se distribuye por todo el cuerpo. Durante la desintegración radiactiva del trazador, el isótopo emite un positrón que se aniquila con un electrón del tejido circundante, generando dos rayos gamma de 511 keV emitidos a aproximadamente 180º. La técnica PET se basa por tanto en la detección simultánea de estos dos rayos gamma, denominados fotones de aniquilación, empleando habitualmente un anillo de detectores alrededor del paciente. Mejorando el diseño y el rendimiento de estos detectores, se mejoran las capacidades diagnósticas que ofrece la imagen PET.
Para aumentar el rendimiento, se ha sugerido utilizar detectores basados en diseños de cristales monolíticos, debido a sus ventajas en comparación con los detectores pixelados. Sin embargo, su implementación en escáneres comerciales requiere superar algunos retos relacionados principalmente con los métodos de posicionamiento y los procedimientos de calibración necesarios para proporcionar las coordenadas de impacto del fotón de aniquilación y el tiempo de llegada de los fotones. Esta tesis doctoral se centra en el desarrollo y validación experimental de metodologías para la determinación precisa de esta información en detectores monolíticos, haciendo hincapié en su aplicación práctica también a sistemas PET completos.
Durante esta tesis se han estudiado los principios fundamentales de los detectores PET monolíticos para comprender su comportamiento y limitaciones. En primer lugar, se han considerado las configuraciones típicas de detectores monolíticos basadas en bloques de centelleo continuo acoplados a matrices de SiPMs planas; además, también se han evaluado y validado otros enfoques novedosos. Se han desarrollado dos metodologías principales, una basada en técnicas analíticas y otra en algoritmos de Aprendizaje Profundo, para el posicionamiento 3D de la interacción del fotón con el fin de aumentar el rendimiento global del detector. Finalmente, los métodos propuestos han sido validados a nivel de detector, pero también en diferentes escáneres PET desarrollados en i3M.
La presente tesis se basa en un compendio de los artículos más relevantes publicados en revistas revisadas por pares por el doctorando y está organizada de la siguiente manera. El Capítulo I presenta una introducción al trabajo de la tesis, compuesto por tres secciones: Imagen Médica, principios de la Tomografía por Emisión de Positrones y, Estimación de posición y calibración en detectores monolíticos. El Capítulo II contiene los objetivos específicos de esta tesis y las principales contribuciones del candidato a este campo. Este capítulo también incluye algunas metodologías y resultados recientes que aún no han sido publicados. El Capítulo III colecciona una copia de los cuatro artículos publicados seleccionados para el compendio, en los que el candidato es el primer autor [1]-[4]. En el Capítulo IV se discuten los principales resultados y conclusiones alcanzados durante la tesis. Por último, el Capítulo V presenta la discusión de esta tesis, resumiendo las principales contribuciones y destacando los logros científicos. / [CAT] La Tomografia per Emissió de Positrons (PET) és una potent tècnica d'imatge que proporciona mitjançant l'ús de radiofàrmacs específics mesures quantitatives dels processos biològics i fisiològics que tenen lloc en l'organisme a nivell molecular. Les imatges PET proporcionen informació funcional que permet el diagnòstic precoç i el seguiment personalitzat del tractament terapèutic. La PET té aplicacions en diverses àrees cliniques y d¿investigació, com l'oncologia, la neurologia o la cardiologia, entre altres. Els esforços per millorar les prestacions dels sistemes PET se centren en millorar la seua sensibilitat i qualitat d'imatge, la qual cosa permet una avaluació clínica més precisa més precís.
En les imatges PET, s'injecta al pacient un radiotraçador marcat amb un radionúclid emissor de positrons que es distribueix per tot el cos. Durant la desintegració radioactiva del traçador, l'isòtop emet un positró que s'aniquila amb un electró del teixit circumdant, generant dos raigs gamma de 511 keV emesos a aproximadament 180º. La tècnica PET es basa per tant en la detecció simultània d'aquests dos raigs gamma, denominats fotons d'anihilació, emprant habitualment un anell de detectors al voltant del pacient. Millorant el disseny i el rendiment d'aquests detectors, es millora les capacitats diagnòstiques que ofereix la imatge PET.
Per a augmentar el rendiment, s'ha suggerit utilitzar detectors basats en dissenys de cristalls monolítics, a causa dels seus avantatges en comparació amb els detectors pixelats. No obstant això, la seua implementació en escàners comercials requereix superar alguns reptes relacionats principalment amb els mètodes de posicionament i els procediments de calibració necessaris per a proporcionar les coordenades d'impacte del fotó d'anihilació i el temps d'arribada dels fotons. Aquesta tesi doctoral se centra en el desenvolupament i validació experimental de metodologies per a la determinació precisa d'aquesta informació en detectors monolítics, posant l'accent en la seua aplicació pràctica també a sistemes PET complets.
Durant aquesta tesi s'han estudiat els principis fonamentals dels detectors PET monolítics per a comprendre el seu comportament i limitacions. En primer lloc, s'han considerat les configuracions típiques de detectors monolítics basats en blocs de centellege continu acoblats a matrius SiPM planes; a més, també s'han evaluat i validat altres enfocaments nous. S'han desenvolupat dues metodologies principals, una basada en tècniques analítiques i una altra en algoritmes d'Aprenentatge Profund, pel posicionament 3D de la interacció del fotó amb la finalitat d'augmentar el rendiment global del detector. Finalment, els mètodes proposats han sigut validats a nivell de detector però també en diferents escàners PET desenvolupats en i3M.
La present tesi es basa en un compendi dels articles més rellevants publicats en revistes revisades per parells pel doctorand i està organitzada de la següent manera. El Capítol I presenta una introducció al treball de tesi, compost per tres seccions: Imatge Mèdica, principis de la Tomografia per Emissió de Positrons i, Estimació de posició i calibració en detectors monolítics. El Capítol II conté els objectius específics d'aquesta tesi i les principals contribucions del candidat a aquest camp. Aquest capítol també inclou algunes metodologies i resultats recents que encara no han sigut publicats. El Capítol III col·lecciona una còpia dels quatre articles publicats seleccionats pel compendi, en els quals el candidat és el primer autor [1]-[4]. En el Capítol IV es discuteixen els principals resultats i conclusions aconseguits durant la tesi. Finalment, el Capítol V presenta la discussió d'aquesta tesi, resumint les principals contribucions i destacant els assoliments científics. / [EN] Positron Emission Tomography (PET) is a powerful imaging technique that provides quantitative measurements of biological and physiological processes occurring within the body at the molecular level by using specific radiopharmaceuticals. PET imaging returns functional information that allows for early diagnosis and personalized therapy treatment follow up. It has applications in several research and clinical areas, such as oncology, neurology or cardiology, among others. Efforts to improve PET systems performance are focused on increasing their sensitivity and image quality, allowing for more accurate clinical assessments.
In PET imaging, a radiotracer labeled with a positron-emitting radionuclide is injected to the patient and consequently, distributed throughout the body. During the radiotracer decay, the isotope emits a positron that annihilates with an electron of the surrounding tissues, generating two 511 keV gamma-rays emitted at approximately 180º. The PET technique is based therefore on the simultaneous detection of these two gamma-rays, called annihilation photons, by usually employing a ring of detectors around the patient. Improving the design and performance of these detectors, increases the diagnostic capabilities of PET imaging.
To boost PET performance, it has been suggested to use detectors based on monolithic crystals designs, due to their advantages compared to pixelated detectors. However, their implementation in commercial scanners requires overcoming some challenges mostly related to photon impact positioning methods and calibration procedures to provide the impact coordinates and time of arrival of the annihilation photons. This PhD thesis focuses on the development and experimental validation of methodologies for an accurate determination of this information in monolithic detectors, emphasizing in their practical application to full PET systems.
During this thesis, the main principles of monolithic-based PET detectors have been studied to understand their behavior and limitations. Typical monolithic detector configurations based on continuous scintillation blocks coupled to flat SiPM arrays have been first considered; additionally, other novel approaches have been also validated. Two main methodologies for 3D photon interaction positioning, one based on analytical methods and another based on Deep Learning algorithms, have been developed to increase the overall detector performance. The proposed methods have been validated at the detector level but also in different PET scanners developed by our group.
The present thesis is based on a compendium of the most relevant papers published in peer-reviewed journals by the PhD candidate and is organized as follows. Chapter I presents an introduction to the thesis work, composed by three sections: Medical Imaging, principles of Positron Emission Tomography and, Position estimation and calibration in monolithic-based detectors. Chapter II contains the specific objectives of this thesis and the main contributions of the candidate to the field. This chapter also includes some recent methodologies and results that have not yet been published. Chapter III collects an author copy of the four published articles selected for the compendium, in which the candidate is the first author [1]-[4]. In Chapter IV the main results and conclusion achieved during the thesis are discussed. Finally, Chapter V presents the discussion of this thesis, summarizing the main contributions and highlighting the scientific achievements. / Freire López-Fando, M. (2023). Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196084 / Compendio
|
Page generated in 0.1038 seconds