• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 12
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Radiometric study of soil: the systematic effects

Joseph, Angelo Daniel January 2007 (has links)
Magister Scientiae - MSc / The natural 238U, 232Th and 40K radioactive content of vineyard soil was measured with an in-situ gamma-ray detector. The activity concentrations measured with the in-situ detector are normalized using the laboratory-determined activity concentrations of several samples from the vineyard site. To determine the activity concentration of a particular soil sample, the gamma-ray photopeak detection efficiencies are required. In this work, the detection efficiencies were derived for each soil sample using gamma-ray photopeaks associated with the radionuclides of 238U and 232Th present in the sample, and the 40K, 1460.8 keV gamma-ray peak, from KCl salt. The systematic effects related to the gamma ray photopeaks used, the sample moisture and sealing, sample volume or filling height, and sample density, were determined and applied in order to obtain the accurate sample activity concentrations. Assessment of the effect of using specific gamma photopeaks on the activity concentrations was done to confirm that the gamma-ray photopeaks highly prone to coincidence summing were omitted from the efficiency analysis. The effect of sample moisture and sealing suggested that in order to optimize the accuracy of each radioactivity measurement each sample must be oven dried and then hermitically sealed. The effect of volume or filling height variations of 0.47 % per mm between the sample and KCl standard was derived and this figure was incorporated into the uncertainty in each of the sample activity concentrations. The effect of density variations of less than 5 %, for sample densities ranging from 0.7 g.cm-3 to 1.6 g.cm-3, was determined and incorporated in the efficiency analysis and activity concentration uncertainties. After taking into account all these systematic effects, the soil sample activity concentration uncertainty was found to be no more than 10.4 % at the 95 % confidence level. / South Africa
12

Determination of natural radioactivity concentrations in soil: a comparative study of Windows and Full Spectrum Analysis

Maphoto, Katse Piet January 2004 (has links)
In this study, two methods of analysing activity concentrations of natural radionuclides (U, Th and K) in soil are critically compared. These are the Window Analysis (WA) and Full Spectrum Analysis (FSA). In the usual WA method, the activity concentrations are determined from the net counts of the windows set around individual &gamma / -ray peaks associated with the decay of U, Th and K. In the FSA method, the full energy spectrum is considered and the measured spectrum is described as the sum of the three standard spectra (associated with U, Th and K, respectively), each multiplied by an unknown concentration. The concentrations are determined from the FSA and correspond to the activity concentrations of U, Th and K in the soil. The standard spectra derived from separate calibration measurements using the HPGe detector, represents the response of the HPGe to a Marinelli sample beaker containing an activity concentration of 1 Bq/kg.
13

Nanocomposite glass-ceramic scintillators for radiation spectroscopy

Barta, Meredith Brooke 24 October 2012 (has links)
In recent years, the United States Departments of Homeland Security (DHS) and Customs and Border Protection (CBP) have been charged with the task of scanning every cargo container crossing domestic borders for illicit radioactive material. This is accomplished by using gamma-ray detection systems capable of discriminating between non-threatening radioisotopes, such as Cs-137, which is often used in nuclear medicine, and fissile material, such as U-238, that can be used to make nuclear weapons or "dirty" bombs. Scintillation detector systems, specifically thallium-doped sodium iodide (NaI(Tl)) single crystals, are by far the most popular choice for this purpose because they are inexpensive relative to other types of detectors, but are still able to identify isotopes with reasonable accuracy. However, increased demand for these systems has served as a catalyst for the research and development of new scintillator materials with potential to surpass NaI(Tl). The focus of a majority of recent scintillator materials research has centered on sintered transparent ceramics, phosphor-doped organic matrices, and the development of novel single crystal compositions. Some of the most promising new materials are glass-ceramic nanocomposites. By precipitating a dense array of nano-scale scintillating crystals rather than growing a single monolith, novel compositions such as LaBr₃(Ce) may be fabricated to useful sizes, and their potential to supersede the energy resolution of NaI(Tl) can be fully explored. Also, because glass-ceramic synthesis begins by casting a homogeneous glass melt, a broad range of geometries beyond the ubiquitous cylinder can be fabricated and characterized. Finally, the glass matrix ensures environmental isolation of the hygroscopic scintillating crystals, and so glass-ceramic scintillators show potential to serve as viable detectors in alpha- and neutron-spectroscopy in addition to gamma-rays. However, for the improvements promised by glass-ceramics to become reality, several material properties must be considered. These include the degree of control over precipitated crystallite size, the solubility limit of the glass matrix with respect to the scintillating compounds, the variation in maximum achievable light yield with composition, and the peak wavelength of emitted photons. Studies will focus on three base glass systems, sodium-aluminosilicate (NAS), sodium-borosilicate (NBS), and alumino-borosilicate (ABS), into which a cerium-doped gadolinium bromide (GdBr₃(Ce)) scintillating phase will be incorporated. Scintillator volumes of 50 cubic centimeters or greater will be fabricated to facilitate comparison with NaI(Tl) crystals currently available.
14

Automated multi-radionuclide separation and analysis with combined detection capability

Plionis, Alexander Asterios 29 August 2008 (has links)
The radiological dispersal device (RDD) is a weapon of great concern to those agencies responsible for protecting the public from the modern age of terrorism. In order to effectively respond to an RDD event, these agencies need to possess the capability to rapidly identify the radiological agents involved in the incident and assess the uptake of each individual victim. Since medical treatment for internal radiation poisoning is radionuclide-specific, it is critical to identify and quantify the radiological uptake of each individual victim. This dissertation describes the development of automated analytical components that could be used to determine and quantify multiple radionuclides in human urine bioassays. This is accomplished through the use of extraction chromatography that is plumbed in-line with one of a variety of detection instruments. Flow scintillation analysis is used for ⁹⁰Sr and ²¹⁰Po determination, flow gamma analysis is used assess ⁶⁰Co and ¹³⁷Cs, and inductively coupled plasma mass spectrometry is used to determine actinides. Detection limits for these analytes were determined for the appropriate technique and related to their implications for health physics.
15

Determination of natural radioactivity concentrations in soil: a comparative study of Windows and Full Spectrum Analysis

Maphoto, Katse Piet January 2004 (has links)
In this study, two methods of analysing activity concentrations of natural radionuclides (U, Th and K) in soil are critically compared. These are the Window Analysis (WA) and Full Spectrum Analysis (FSA). In the usual WA method, the activity concentrations are determined from the net counts of the windows set around individual &gamma / -ray peaks associated with the decay of U, Th and K. In the FSA method, the full energy spectrum is considered and the measured spectrum is described as the sum of the three standard spectra (associated with U, Th and K, respectively), each multiplied by an unknown concentration. The concentrations are determined from the FSA and correspond to the activity concentrations of U, Th and K in the soil. The standard spectra derived from separate calibration measurements using the HPGe detector, represents the response of the HPGe to a Marinelli sample beaker containing an activity concentration of 1 Bq/kg.
16

Automated multi-radionuclide separation and analysis with combined detection capability

Plionis, Alexander Asterios. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
17

The Effect of Material Properties on Energy Resolution in Gamma-ray Detectors

January 2011 (has links)
abstract: Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using a model for inelastic electron scattering based on electron energy-loss spectra. From a simplified "toy model" for a generic material, energy resolution is found to oscillate as the plasmon resonance energy is increased, and energy resolution can also depend on the valence band width. By incorporating the model developed here as an extension of the radiation transport code Penelope, photon processes are also included. The enhanced version of Penelope is used to calculate the Fano factor and average electron-hole pair energy in semiconductors silicon, gallium arsenide, zinc telluride, and scintillators cerium fluoride and lutetium oxyorthosilicate (LSO). If the effects of the valence band density-of-states and phonon scattering are removed, the calculated energy-resolution for these materials is fairly close to that for a toy model with a uniform electron energy-loss probability density function. This implies that the details of the electron cascade may in some cases have only a marginal effect on energy resolution. / Dissertation/Thesis / Ph.D. Physics 2011
18

Determination of natural radioactivity concentrations in soil: a comparative study of Windows and Full Spectrum Analysis

Maphoto, Katse Piet January 2004 (has links)
Magister Scientiae - MSc / In this study, two methods of analysing activity concentrations of natural radionuclides (U, Th and K) in soil are critically compared. These are the Window Analysis (WA) and Full Spectrum Analysis (FSA). In the usual WA method, the activity concentrations are determined from the net counts of the windows set around individual γ-ray peaks associated with the decay of U, Th and K. In the FSA method, the full energy spectrum is considered and the measured spectrum is described as the sum of the three standard spectra (associated with U, Th and K, respectively), each multiplied by an unknown concentration. The concentrations are determined from the FSA and correspond to the activity concentrations of U, Th and K in the soil. The standard spectra derived from separate calibration measurements using the HPGe detector, represents the response of the HPGe to a Marinelli sample beaker containing an activity concentration of 1 Bq/kg. / South Africa
19

Computational Methods in Multi-Messenger Astrophysics using Gravitational Waves and High Energy Neutrinos

Countryman, Stefan Trklja January 2023 (has links)
This dissertation seeks to describe advancements made in computational methods for multi-messenger astrophysics (MMA) using gravitational waves GW and neutrinos during Advanced LIGO (aLIGO)’s first through third observing runs (O1-O3) and, looking forward, to describe novel computational techniques suited to the challenges of both the burgeoning MMA field and high-performance computing as a whole. The first two chapters provide an overview of MMA as it pertains to gravitational wave/high energy neutrino (GWHEN) searches, including a summary of expected astrophysical sources as well as GW, neutrino, and gamma-ray detectors used in their detection. These are followed in the third chapter by an in-depth discussion of LIGO’s timing system, particularly the diagnostic subsystem, describing both its role in MMA searches and the author’s contributions to the system itself. The fourth chapter provides a detailed description of the Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA), the GWHEN pipeline developed by the author and used in O2 and O3. Relevant past multi-messenger searches are described first, followed by the O2 and O3 analysis methods, the pipeline’s performance, scientific results, and finally, an in-depth account of the library’s structure and functionality. In particular, the author’s high-performance multi-order coordinates (MOC) HEALPix image analysis library, HPMOC, is described. HPMOC increases performance of HEALPix image manipulations by several orders of magnitude vs. naive single-resolution approaches while presenting a simple high-level interface and should prove useful for diverse future MMA searches. The performance improvements it provides for LLAMA are also covered. The final chapter of this dissertation builds on the approaches taken in developing HPMOC, presenting several novel methods for efficiently storing and analyzing large data sets, with applications to MMA and other data-intensive fields. A family of depth-first multi-resolution ordering of HEALPix images — DEPTH9, DEPTH19, and DEPTH40 — is defined, along with algorithms and use cases where it can improve on current approaches, including high-speed streaming calculations suitable for serverless compute or FPGAs. For performance-constrained analyses on HEALPix data (e.g. image analysis in multi-messenger search pipelines) using SIMD processors, breadth-first data structures can provide short-circuiting calculations in a data-parallel way on compressed data; a simple compression method is described with application to further improving LLAMA performance. A new storage scheme and associated algorithms for efficiently compressing and contracting tensors of varying sparsity is presented; these demuxed tensors (D-Tensors) have equivalent asymptotic time and space complexity to optimal representations of both dense and sparse matrices, and could be used as a universal drop-in replacement to reduce code complexity and developer effort while improving performance of existing non-optimized numerical code. Finally, the big bucket hash table (B-Table), a novel type of hash table making guarantees on data layout (vs. load factor), is described, along with optimizations it allows for (like hardware acceleration, online rebuilds, and hard realtime applications) that are not possible with existing hash table approaches. These innovations are presented in the hope that some will prove useful for improving future MMA searches and other data-intensive applications.
20

Safeguards assessment of gamma-ray detection for process monitoring at natural uranium conversion facilities

Dewji, Shaheen Azim 22 May 2014 (has links)
Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. With each step in the conversion process from yellowcake to feedstock for UF6, intermediary uranium oxide and uranium fluoride compounds become progressively attractive products for diversion toward activities noncompliant with international treaties. The diversion of this product material could potentially provide feedstock for a clandestine or undeclared enrichment for weapons development for state or non-state entities. With the realization of this potential, the International Atomic Energy Agency (IAEA) has only recently reinterpreted its policies to emphasize safeguarding this feedstock in response to such diversion pathways. This project employs a combination of simulation models and experimental measurements to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UN) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process-monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. This work investigates gamma-ray signatures UN circulating in the UNCLE facility and evaluates various gamma-ray detector (HPGe, LaBr3 and NaI) sensitivities to UN.

Page generated in 0.2883 seconds