• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sparsity Motivated Auditory Wavelet Representation and Blind Deconvolution

Adiga, Aniruddha January 2017 (has links) (PDF)
In many scenarios, events such as singularities and transients that carry important information about a signal undergo spreading during acquisition or transmission and it is important to localize the events. For example, edges in an image, point sources in a microscopy or astronomical image are blurred by the point-spread function (PSF) of the acquisition system, while in a speech signal, the epochs corresponding to glottal closure instants are shaped by the vocal tract response. Such events can be extracted with the help of techniques that promote sparsity, which enables separation of the smooth components from the transient ones. In this thesis, we consider development of such sparsity promoting techniques. The contributions of the thesis are three-fold: (i) an auditory-motivated continuous wavelet design and representation, which helps identify singularities; (ii) a sparsity-driven deconvolution technique; and (iii) a sparsity-driven deconvolution technique for reconstruction of nite-rate-of-innovation (FRI) signals. We use the speech signal for illustrating the performance of the techniques in the first two parts and super-resolution microscopy (2-D) for the third part. In the rst part, we develop a continuous wavelet transform (CWT) starting from an auditory motivation. Wavelet analysis provides good time and frequency localization, which has made it a popular tool for time-frequency analysis of signals. The CWT is a multiresolution analysis tool that involves decomposition of a signal using a constant-Q wavelet filterbank, akin to the time-frequency analysis performed by basilar membrane in the peripheral human auditory system. This connection motivated us to develop wavelets that possess auditory localization capabilities. Gammatone functions are extensively used in the modeling of the basilar membrane, but the non-zero average of the functions poses a hurdle. We construct bona de wavelets from the Gammatone function called Gammatone wavelets and analyze their properties such as admissibility, time-bandwidth product, vanishing moments, etc.. Of particular interest is the vanishing moments property, which enables the wavelet to suppress smooth regions in a signal leading to sparsi cation. We show how this property of the Gammatone wavelets coupled with multiresolution analysis could be employed for singularity and transient detection. Using these wavelets, we also construct equivalent lterbank models and obtain cepstral feature vectors out of such a representation. We show that the Gammatone wavelet cepstral coefficients (GWCC) are effective for robust speech recognition compared with mel-frequency cepstral coefficients (MFCC). In the second part, we consider the problem of sparse blind deconvolution (SBD) starting from a signal obtained as the convolution of an unknown PSF and a sparse excitation. The BD problem is ill-posed and the goal is to employ sparsity to come up with an accurate solution. We formulate the SBD problem within a Bayesian framework. The estimation of lter and excitation involves optimization of a cost function that consists of an `2 data- fidelity term and an `p-norm (p 2 [0; 1]) regularizer, as the sparsity promoting prior. Since the `p-norm is not differentiable at the origin, we consider a smoothed version of the `p-norm as a proxy in the optimization. Apart from the regularizer being non-convex, the data term is also non-convex in the filter and excitation as they are both unknown. We optimize the non-convex cost using an alternating minimization strategy, and develop an alternating `p `2 projections algorithm (ALPA). We demonstrate convergence of the iterative algorithm and analyze in detail the role of the pseudo-inverse solution as an initialization for the ALPA and provide probabilistic bounds on its accuracy considering the presence of noise and the condition number of the linear system of equations. We also consider the case of bounded noise and derive tight tail bounds using the Hoe ding inequality. As an application, we consider the problem of blind deconvolution of speech signals. In the linear model for speech production, voiced speech is assumed to be the result of a quasi-periodic impulse train exciting a vocal-tract lter. The locations of the impulses or epochs indicate the glottal closure instants and the spacing between them the pitch. Hence, the excitation in the case of voiced speech is sparse and its deconvolution from the vocal-tract filter is posed as a SBD problem. We employ ALPA for SBD and show that excitation obtained is sparser than the excitations obtained using sparse linear prediction, smoothed `1=`2 sparse blind deconvolution algorithm, and majorization-minimization-based sparse deconvolution techniques. We also consider the problem of epoch estimation and show that epochs estimated by ALPA in both clean and noisy conditions are closer to the instants indicated by the electroglottograph when with to the estimates provided by the zero-frequency ltering technique, which is the state-of-the-art epoch estimation technique. In the third part, we consider the problem of deconvolution of a specific class of continuous-time signals called nite-rate-of-innovation (FRI) signals, which are not bandlimited, but specified by a nite number of parameters over an observation interval. The signal is assumed to be a linear combination of delayed versions of a prototypical pulse. The reconstruction problem is posed as a 2-D SBD problem. The kernel is assumed to have a known form but with unknown parameters. Given the sampled version of the FRI signal, the delays quantized to the nearest point on the sampling grid are rst estimated using proximal-operator-based alternating `p `2 algorithm (ALPAprox), and then super-resolved to obtain o -grid (O. G.) estimates using gradient-descent optimization. The overall technique is termed OG-ALPAprox. We show application of OG-ALPAprox to a particular modality of super-resolution microscopy (SRM), called stochastic optical reconstruction microscopy (STORM). The resolution of the traditional optical microscope is limited by di raction and is termed as Abbe's limit. The goal of SRM is to engineer the optical imaging system to resolve structures in specimens, such as proteins, whose dimensions are smaller than the di raction limit. The specimen to be imaged is tagged or labeled with light-emitting or uorescent chemical compounds called uorophores. These compounds speci cally bind to proteins and exhibit uorescence upon excitation. The uorophores are assumed to be point sources and the light emitted by them undergo spreading due to di raction. STORM employs a sequential approach, wherein each step only a few uorophores are randomly excited and the image is captured by a sensor array. The obtained image is di raction-limited, however, the separation between the uorophores allows for localizing the point sources with high precision. The localization is performed using Gaussian peak- tting. This process of random excitation coupled with localization is performed sequentially and subsequently consolidated to obtain a high-resolution image. We pose the localization as a SBD problem and employ OG-ALPAprox to estimate the locations. We also report comparisons with the de facto standard Gaussian peak- tting algorithm and show that the statistical performance is superior. Experimental results on real data show that the reconstruction quality is on par with the Gaussian peak- tting.
2

Auditory domain speech enhancement

Yang, Xiaofeng 04 June 2008 (has links)
Many speech enhancement algorithms suffer from musical noise - an estimation residue noise consisting of music-like varying tones. To reduce this annoying noise, some speech enhancement algorithms require post-processing. However, a lack of auditory perception theories about musical noise limits the effectiveness of musical noise reduction methods. Scientists now have some understanding of the human auditory system, thanks to the advances in hearing research across multiple disciplines - anatomy, physiology, psychology, and neurophysiology. Auditory models, such as the gammatone filter bank and the Meddis inner hair cell model, have been developed to simulate the acoustic to neuron transduction process. The auditory models generate the neuron firing signals called the cochleagram. Cochleagram analysis is a powerful tool to investigate musical noise. We use auditory perception theories in our musical noise investigations. Some auditory perception theories (e.g., volley theory and auditory scene analysis theories) suggest that speech perception is an auditory grouping process. Temporal properties of neuron firing signals, such as period and rhythm, play important roles in the grouping process. The grouping process generates a foreground speech stream, a background noise stream, and possibly additional streams. We assume that musical noise is the result of grouping to the background stream the neuron firing signals whose temporal properties are different from the ones grouped to the foreground stream. Based on this hypothesis, we believe that a musical noise reduction method should increase the probability of grouping the enhanced neuron firing signals to the foreground speech stream, or decrease the probability of grouping them into the background stream. We propose a post-processing musical noise reduction method for the auditory Wiener filter speech enhancement method, in which we employ a proposed complex gammatone filter bank for the cochlear decomposition. The results of a subjective listening test of our speech enhancement system show that the proposed musical noise reduction method is effective. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-05-28 16:11:28.374
3

Speech Detection Using Gammatone Features And One-class Support Vector Machine

Cooper, Douglas 01 January 2013 (has links)
A network gateway is a mechanism which provides protocol translation and/or validation of network traffic using the metadata contained in network packets. For media applications such as Voice-over-IP, the portion of the packets containing speech data cannot be verified and can provide a means of maliciously transporting code or sensitive data undetected. One solution to this problem is through Voice Activity Detection (VAD). Many VAD’s rely on time-domain features and simple thresholds for efficient speech detection however this doesn’t say much about the signal being passed. More sophisticated methods employ machine learning algorithms, but train on specific noises intended for a target environment. Validating speech under a variety of unknown conditions must be possible; as well as differentiating between speech and nonspeech data embedded within the packets. A real-time speech detection method is proposed that relies only on a clean speech model for detection. Through the use of Gammatone filter bank processing, the Cepstrum and several frequency domain features are used to train a One-Class Support Vector Machine which provides a clean-speech model irrespective of environmental noise. A Wiener filter is used to provide improved operation for harsh noise environments. Greater than 90% detection accuracy is achieved for clean speech with approximately 70% accuracy for SNR as low as 5dB
4

Applications of perceptual sparse representation (Spikegram) for copyright protection of audio signals / Applications de la représentation parcimonieuse perceptuelle par graphe de décharges (Spikegramme) pour la protection du droit d’auteur des signaux sonores

Erfani, Yousof January 2016 (has links)
Chaque année, le piratage mondial de la musique coûte plusieurs milliards de dollars en pertes économiques, pertes d’emplois et pertes de gains des travailleurs ainsi que la perte de millions de dollars en recettes fiscales. La plupart du piratage de la musique est dû à la croissance rapide et à la facilité des technologies actuelles pour la copie, le partage, la manipulation et la distribution de données musicales [Domingo, 2015], [Siwek, 2007]. Le tatouage des signaux sonores a été proposé pour protéger les droit des auteurs et pour permettre la localisation des instants où le signal sonore a été falsifié. Dans cette thèse, nous proposons d’utiliser la représentation parcimonieuse bio-inspirée par graphe de décharges (spikegramme), pour concevoir une nouvelle méthode permettant la localisation de la falsification dans les signaux sonores. Aussi, une nouvelle méthode de protection du droit d’auteur. Finalement, une nouvelle attaque perceptuelle, en utilisant le spikegramme, pour attaquer des systèmes de tatouage sonore. Nous proposons tout d’abord une technique de localisation des falsifications (‘tampering’) des signaux sonores. Pour cela nous combinons une méthode à spectre étendu modifié (‘modified spread spectrum’, MSS) avec une représentation parcimonieuse. Nous utilisons une technique de poursuite perceptive adaptée (perceptual marching pursuit, PMP [Hossein Najaf-Zadeh, 2008]) pour générer une représentation parcimonieuse (spikegramme) du signal sonore d’entrée qui est invariante au décalage temporel [E. C. Smith, 2006] et qui prend en compte les phénomènes de masquage tels qu’ils sont observés en audition. Un code d’authentification est inséré à l’intérieur des coefficients de la représentation en spikegramme. Puis ceux-ci sont combinés aux seuils de masquage. Le signal tatoué est resynthétisé à partir des coefficients modifiés, et le signal ainsi obtenu est transmis au décodeur. Au décodeur, pour identifier un segment falsifié du signal sonore, les codes d’authentification de tous les segments intacts sont analysés. Si les codes ne peuvent être détectés correctement, on sait qu’alors le segment aura été falsifié. Nous proposons de tatouer selon le principe à spectre étendu (appelé MSS) afin d’obtenir une grande capacité en nombre de bits de tatouage introduits. Dans les situations où il y a désynchronisation entre le codeur et le décodeur, notre méthode permet quand même de détecter des pièces falsifiées. Par rapport à l’état de l’art, notre approche a le taux d’erreur le plus bas pour ce qui est de détecter les pièces falsifiées. Nous avons utilisé le test de l’opinion moyenne (‘MOS’) pour mesurer la qualité des systèmes tatoués. Nous évaluons la méthode de tatouage semi-fragile par le taux d’erreur (nombre de bits erronés divisé par tous les bits soumis) suite à plusieurs attaques. Les résultats confirment la supériorité de notre approche pour la localisation des pièces falsifiées dans les signaux sonores tout en préservant la qualité des signaux. Ensuite nous proposons une nouvelle technique pour la protection des signaux sonores. Cette technique est basée sur la représentation par spikegrammes des signaux sonores et utilise deux dictionnaires (TDA pour Two-Dictionary Approach). Le spikegramme est utilisé pour coder le signal hôte en utilisant un dictionnaire de filtres gammatones. Pour le tatouage, nous utilisons deux dictionnaires différents qui sont sélectionnés en fonction du bit d’entrée à tatouer et du contenu du signal. Notre approche trouve les gammatones appropriés (appelés noyaux de tatouage) sur la base de la valeur du bit à tatouer, et incorpore les bits de tatouage dans la phase des gammatones du tatouage. De plus, il est montré que la TDA est libre d’erreur dans le cas d’aucune situation d’attaque. Il est démontré que la décorrélation des noyaux de tatouage permet la conception d’une méthode de tatouage sonore très robuste. Les expériences ont montré la meilleure robustesse pour la méthode proposée lorsque le signal tatoué est corrompu par une compression MP3 à 32 kbits par seconde avec une charge utile de 56.5 bps par rapport à plusieurs techniques récentes. De plus nous avons étudié la robustesse du tatouage lorsque les nouveaux codec USAC (Unified Audion and Speech Coding) à 24kbps sont utilisés. La charge utile est alors comprise entre 5 et 15 bps. Finalement, nous utilisons les spikegrammes pour proposer trois nouvelles méthodes d’attaques. Nous les comparons aux méthodes récentes d’attaques telles que 32 kbps MP3 et 24 kbps USAC. Ces attaques comprennent l’attaque par PMP, l’attaque par bruit inaudible et l’attaque de remplacement parcimonieuse. Dans le cas de l’attaque par PMP, le signal de tatouage est représenté et resynthétisé avec un spikegramme. Dans le cas de l’attaque par bruit inaudible, celui-ci est généré et ajouté aux coefficients du spikegramme. Dans le cas de l’attaque de remplacement parcimonieuse, dans chaque segment du signal, les caractéristiques spectro-temporelles du signal (les décharges temporelles ;‘time spikes’) se trouvent en utilisant le spikegramme et les spikes temporelles et similaires sont remplacés par une autre. Pour comparer l’efficacité des attaques proposées, nous les comparons au décodeur du tatouage à spectre étendu. Il est démontré que l’attaque par remplacement parcimonieux réduit la corrélation normalisée du décodeur de spectre étendu avec un plus grand facteur par rapport à la situation où le décodeur de spectre étendu est attaqué par la transformation MP3 (32 kbps) et 24 kbps USAC. / Abstract : Every year global music piracy is making billion dollars of economic, job, workers’ earnings losses and also million dollars loss in tax revenues. Most of the music piracy is because of rapid growth and easiness of current technologies for copying, sharing, manipulating and distributing musical data [Domingo, 2015], [Siwek, 2007]. Audio watermarking has been proposed as one approach for copyright protection and tamper localization of audio signals to prevent music piracy. In this thesis, we use the spikegram- which is a bio-inspired sparse representation- to propose a novel approach to design an audio tamper localization method as well as an audio copyright protection method and also a new perceptual attack against any audio watermarking system. First, we propose a tampering localization method for audio signal, based on a Modified Spread Spectrum (MSS) approach. Perceptual Matching Pursuit (PMP) is used to compute the spikegram (which is a sparse and time-shift invariant representation of audio signals) as well as 2-D masking thresholds. Then, an authentication code (which includes an Identity Number, ID) is inserted inside the sparse coefficients. For high quality watermarking, the watermark data are multiplied with masking thresholds. The time domain watermarked signal is re-synthesized from the modified coefficients and the signal is sent to the decoder. To localize a tampered segment of the audio signal, at the decoder, the ID’s associated to intact segments are detected correctly, while the ID associated to a tampered segment is mis-detected or not detected. To achieve high capacity, we propose a modified version of the improved spread spectrum watermarking called MSS (Modified Spread Spectrum). We performed a mean opinion test to measure the quality of the proposed watermarking system. Also, the bit error rates for the presented tamper localization method are computed under several attacks. In comparison to conventional methods, the proposed tamper localization method has the smallest number of mis-detected tampered frames, when only one frame is tampered. In addition, the mean opinion test experiments confirms that the proposed method preserves the high quality of input audio signals. Moreover, we introduce a new audio watermarking technique based on a kernel-based representation of audio signals. A perceptive sparse representation (spikegram) is combined with a dictionary of gammatone kernels to construct a robust representation of sounds. Compared to traditional phase embedding methods where the phase of signal’s Fourier coefficients are modified, in this method, the watermark bit stream is inserted by modifying the phase of gammatone kernels. Moreover, the watermark is automatically embedded only into kernels with high amplitudes where all masked (non-meaningful) gammatones have been already removed. Two embedding methods are proposed, one based on the watermark embedding into the sign of gammatones (one dictionary method) and another one based on watermark embedding into both sign and phase of gammatone kernels (two-dictionary method). The robustness of the proposed method is shown against 32 kbps MP3 with an embedding rate of 56.5 bps while the state of the art payload for 32 kbps MP3 robust iii iv watermarking is lower than 50.3 bps. Also, we showed that the proposed method is robust against unified speech and audio codec (24 kbps USAC, Linear predictive and Fourier domain modes) with an average payload of 5 − 15 bps. Moreover, it is shown that the proposed method is robust against a variety of signal processing transforms while preserving quality. Finally, three perceptual attacks are proposed in the perceptual sparse domain using spikegram. These attacks are called PMP, inaudible noise adding and the sparse replacement attacks. In PMP attack, the host signals are represented and re-synthesized with spikegram. In inaudible noise attack, the inaudible noise is generated and added to the spikegram coefficients. In sparse replacement attack, each specific frame of the spikegram representation - when possible - is replaced with a combination of similar frames located in other parts of the spikegram. It is shown than the PMP and inaudible noise attacks have roughly the same efficiency as the 32 kbps MP3 attack, while the replacement attack reduces the normalized correlation of the spread spectrum decoder with a greater factor than when attacking with 32 kbps MP3 or 24 kbps unified speech and audio coding (USAC).
5

Décodage neuronal dans le système auditif central à l'aide d'un modèle bilinéaire généralisé et de représentations spectro-temporelles bio-inspirées / Neural decoding in the central auditory system using bio-inspired spectro-temporal representations and a generalized bilinear model

Siahpoush, Shadi January 2015 (has links)
Résumé : Dans ce projet, un décodage neuronal bayésien est effectué sur le colliculus inférieur du cochon d'Inde. Premièrement, On lit les potentiels évoqués grâce aux électrodes et ensuite on en déduit les potentiels d'actions à l'aide de technique de classification des décharges des neurones. Ensuite, un modèle linéaire généralisé (GLM) est entraîné en associant un stimulus acoustique en même temps que les mesures de potentiel qui sont effectuées. Enfin, nous faisons le décodage neuronal de l'activité des neurones en utilisant une méthode d'estimation statistique par maximum à posteriori afin de reconstituer la représentation spectro-temporelle du signal acoustique qui correspond au stimulus acoustique. Dans ce projet, nous étudions l'impact de différents modèles de codage neuronal ainsi que de différentes représentations spectro-temporelles (qu'elles sont supposé représenter le stimulus acoustique équivalent) sur la précision du décodage bayésien de l'activité neuronale enregistrée par le système auditif central. En fait, le modèle va associer une représentation spectro-temporelle équivalente au stimulus acoustique à partir des mesures faites dans le cerveau. Deux modèles de codage sont comparés: un GLM et un modèle bilinéaire généralisé (GBM), chacun avec trois différentes représentations spectro-temporelles des stimuli d'entrée soit un spectrogramme ainsi que deux représentations bio-inspirées: un banc de filtres gammatones et un spikegramme. Les paramètres des GLM et GBM, soit le champ récepteur spectro-temporel, le filtre post décharge et l'entrée non linéaire (seulement pour le GBM) sont adaptés en utilisant un algorithme d'optimisation par maximum de vraisemblance (ML). Le rapport signal sur bruit entre la représentation reconstruite et la représentation originale est utilisé pour évaluer le décodage, c'est-à-dire la précision de la reconstruction. Nous montrons expérimentalement que la précision de la reconstruction est meilleure avec une représentation par spikegramme qu'avec une représentation par spectrogramme et, en outre, que l'utilisation d'un GBM au lieu d'un GLM augmente la précision de la reconstruction. En fait, nos résultats montrent que le rapport signal à bruit de la reconstruction d'un spikegramme avec le modèle GBM est supérieur de 3.3 dB au rapport signal à bruit de la reconstruction d'un spectrogramme avec le modèle GLM. / Abstract : In this project, Bayesian neural decoding is performed on the neural activity recorded from the inferior colliculus of the guinea pig following the presentation of a vocalization. In particular, we study the impact of different encoding models on the accuracy of reconstruction of different spectro-temporal representations of the input stimulus. First voltages recorded from the inferior colliculus of the guinea pig are read and the spike trains are obtained. Then, we fit an encoding model to the stimulus and associated spike trains. Finally, we do neural decoding on the pairs of stimuli and neural activities using the maximum a posteriori optimization method to obtain the reconstructed spectro-temporal representation of the signal. Two encoding models, a generalized linear model (GLM) and a generalized bilinear model (GBM), are compared along with three different spectro-temporal representations of the input stimuli: a spectrogram and two bio-inspired representations, i.e. a gammatone filter bank (GFB) and a spikegram. The parameters of the GLM and GBM including spectro-temporal receptive field, post spike filter and input non linearity (only for the GBM) are fitted using the maximum likelihood optimization (ML) algorithm. Signal to noise ratios between the reconstructed and original representations are used to evaluate the decoding, or reconstruction accuracy. We experimentally show that the reconstruction accuracy is better with the spikegram representation than with the spectrogram and GFB representation. Furthermore, using a GBM instead of a GLM significantly increases the reconstruction accuracy. In fact, our results show that the spikegram reconstruction accuracy with a GBM fitting yields an SNR that is 3.3 dB better than when using the standard decoding approach of reconstructing a spectrogram with GLM fitting.
6

Automatic Speech Quality Assessment in Unified Communication : A Case Study / Automatisk utvärdering av samtalskvalitet inom integrerad kommunikation : en fallstudie

Larsson Alm, Kevin January 2019 (has links)
Speech as a medium for communication has always been important in its ability to convey our ideas, personality and emotions. It is therefore not strange that Quality of Experience (QoE) becomes central to any business relying on voice communication. Using Unified Communication (UC) systems, users can communicate with each other in several ways using many different devices, making QoE an important aspect for such systems. For this thesis, automatic methods for assessing speech quality of the voice calls in Briteback’s UC application is studied, including a comparison of the researched methods. Three methods all using a Gaussian Mixture Model (GMM) as a regressor, paired with extraction of Human Factor Cepstral Coefficients (HFCC), Gammatone Frequency Cepstral Coefficients (GFCC) and Modified Mel Frequency Cepstrum Coefficients (MMFCC) features respectively is studied. The method based on HFCC feature extraction shows better performance in general compared to the two other methods, but all methods show comparatively low performance compared to literature. This most likely stems from implementation errors, showing the difference between theory and practice in the literature, together with the lack of reference implementations. Further work with practical aspects in mind, such as reference implementations or verification tools can make the field more popular and increase its use in the real world.
7

Generalized Analytic Signal Construction and Modulation Analysis

Venkitaraman, Arun January 2013 (has links) (PDF)
This thesis deals with generalizations of the analytic signal (AS) construction proposed by Gabor. Functional extensions of the fractional Hilbert Transform (FrHT) are proposed using which families of analytic signals are obtained. The construction is further applied in the design of a secure communication scheme. A demodulation scheme is developed based on the generalized AS, motivated by perceptual experiments in binaural hearing. Demodulation is achieved using a signal and its arbitrary phase-shifted version which, in turn translated to demodulation using a pair of flat-top bandpass filters that form an FrHT parir. A new family of wavelets based on the popular Gammatone auditory model is proposed and is shown to lead to a good characterization of singularities/transients in a signal. Allied problems of computing smooth amplitude, phase, and frequency modulations from the AS. Construction of FrHT pair of wavelets, and temporal envelope fit of transient audio signals are also addressed.

Page generated in 0.0547 seconds