• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some studies in tropospheric chemistry

Cotter, Eimear S. N. January 2000 (has links)
No description available.
2

Unimolecular and bimolecular reactions of alkyl radicals

Al-Niami, Kisma Hachim Ibrahim January 1988 (has links)
No description available.
3

<b>GAS-PHASE ION-ION CHEMISTRY FOR LIPID STRUCTURAL CHARACTERIZATION AND FOR REACTIONS IN A MOLECULAR CONTAINER</b>

Sarah Twumwah Nsiah (19183795) 21 July 2024 (has links)
<p dir="ltr">This thesis focuses on ion-ion reactions for making ions for lipid structural elucidation and chemical reactions.</p>
4

Laser flash photolysis studies of chlorine atom reactions with fluorinated propenes and methyl amines

Mazumder, Shrila 27 August 2014 (has links)
The research addresses two groups of reactions: chlorine atom reactions with fluorinated propenes and methyl amines. Most of the reactions were studied over a range of temperature and pressure with the goals of (i) assessing the potential importance of the reactions in atmospheric chemistry and (ii) obtaining kinetic and thermochemical information of fundamental physical–chemical interest. In the studies reported herein, laser flash photolysis (LFP) was coupled with time resolved atomic resonance fluorescence (RF) spectroscopic detection of chlorine atoms to investigate chlorine atom kinetics.
5

Astrochimie expérimentale : cinétique des réactions neutre-neutre à basse température et pertinence pour la chimie des atmosphères planétaires et des nuages interstellaires / Experimental astrochemistry : the kinetics of neutral-neutral reactions at low temperature and their relevance to the chemistry of planetary atmospheres and interstellar clouds

Núñez Reyes, Dianailys 19 March 2019 (has links)
Les 50 dernières années ont été caractérisées par le développement rapide de l’astrochimie. Plus de 150 réactions entre espèces neutres ont déjà été étudiées aux basses températures qui sont celles du le milieu interstellaire et des atmosphères planétaires. Néanmoins, les constantes de vitesse, et la nature des produits, restent inconnus pour de nombreuses réactions potentiellement importantes pour caractériser ces milieux. Nous avons effectué des études cinétiques pour des processus réactifs, et non réactifs, entre des atomes dans un état électronique excité [C(1D), O(1D) et N(2D)] et plusieurs molécules stables afin de quantifier leur importance dans la chimie des atmosphères planétaires. Nous avons aussi étudié la réaction entre les atomes de carbone dans leur état électronique fondamental (3P) et l’eau, confirmant l’importance, pour certaines réactions avec barrière, de l’effet tunnel pour la réactivité à basse température. Les constantes de vitesse et les rapports de branchement pour ces processus ont été déterminés dans la gamme de température entre 50 et 296 K en utilisant un appareil CRESU, les atomes étudiés ont été produits par photolyse à l’aide d’un laser pulsé (PLP) et détectés par fluorescence induite dans l’ultraviolet sous vide (VUV LIF). / The last 50 years have been characterized by the fast development of astrochemistry as a science. To date, more than 150 gas-phase neutral-neutral reactions have been investigated at low temperatures relevant to planetary atmospheres and in cold regions of the interstellar medium. However, the rate constants and nature of the products for many potentially important gas-phase processes remain unknown. We performed kinetic studies of reactive and non-reactive removal processes between electronically excited atoms [C(1D), O(1D) and N(2D)] with several molecules in order to quantify their importance in the chemistry of planetary atmospheres. Furthermore, we also investigated the reaction between carbon atoms in their ground electronic state (3P) with water, providing new evidence of a quantum mechanical tunnelling mechanism at low temperatures, which could play an important role in the chemistry of interstellar clouds. Rate constants and branching ratios for these processes were determined over the 50 - 296 K temperature range using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus coupled with pulsed laser photolysis (PLP) and vacuum ultraviolet laser induced fluorescence (VUV LIF).
6

The Investigation of Oxidative Addition Reactions of Metal Complexes in Cross-Coupling Catalytic Cycles Based on a Unique Methodology of Coupled Ion/Ion-Ion/Molecule Reactions

Parker, Mariah L. 01 January 2018 (has links)
Popular catalytic cycles, such as the Heck, Suzuki, and Negishi, utilize metal centers that oscillate between two oxidation states (II/0) during the three main steps of catalysis: reductive elimination, oxidative addition, and transmetallation. There has been a push to use less toxic, cheaper metal centers in catalytic cycles, leading to interest in first-row transition metals, such as nickel and cobalt. With these metals, the cycles can potentially pass through the +1 oxidation state, which acts as reactive intermediates, undergoing oxidative additions to form products, potentially with radical characteristics. The oxidative addition steps of catalytic cycles are critical to determining overall rates and products, however in many cases, these steps have not been amenable to study, in either condensed phase or gas phase, in the past. Through the use of electron transfer dissociation (ETD) technology on a modified Thermo Electron LTQ XLTM mass spectrometer, it is possible to generate intermediates in these catalytic cycles, including those in unusual oxidation states. Using sequentially coupled ion/ion-ion/molecule reactions, the reduced, reactive intermediate can be readily generated, isolated, and studied.As a model set of reactions, the mono- and bis-phenanthroline complexes of Fe(I), Co(I), Ni(I), Cu(I), and Zn(I) were formed by reduction of the corresponding M(II) species in an ion/ion reaction with the fluoranthenyl radical anion. The chemistry of the M(I) species was probed in ion/molecule reactions with allyl iodide. In order to explore ligand effects and the scope of oxidative addition reagents further, bipyridine and terpyridine were studied with these five first-row transition metal complexes while using an acetate series and other substrates for oxidative additions. Through these studies, the roles of the metal and ligand in dictating the product distributions and reaction rates were assessed. Metal electron count, ligand flexibility, and coordination number are critical factors. The overall reactivity is in accord with density functional theory calculations and mirrors that of proposed intermediates in condensed-phase catalytic cycles. In addition, second- and third-row transition metals (Ru(I), Pd(I), and Pt(I)) were explored with bipyridine, mono- and bis-triphenylphosphine, and 1,2-bis(diphenylphosphino)benzene ligation schemes. A variety of oxidative addition reagents were surveyed to determine the scope of reactivity and preference toward metal-carbon bond formation or carbon radical formation.
7

Synthesis and reactivity of bare and ligated small metal complexes / Synthèse et réactivité de petits agrégats de métaux, isolés et complexés

Vojkovic, Marin 20 October 2016 (has links)
Nous décrivons le développement d'une nouvelle source d'ablation laser de nano-agrégats, qui couple la vaporisation laser avec l'ionisation par électro-spray. Avec cette source nous sommes capables de produire de nombreuses nouvelles espèces d'agrégats métalliques, de les étudier par spectrométrie de masse, et d'observer leur réactivité en phase gazeuse. Les stochiométries des nouvelles espèces sont étudiées en fonction de la composition du jet électro-spray. Nous trouvons ainsi que la présence de ligands thiols dans l'électro-spray empêche l'oxydation dans l'atmosphère des agrégats métalliques. De plus, la stabilité et le motif de fragmentation des agrégats métalliques et de leurs oxydes sont étudiés en mettant l'accent sur les différences et les similarités entre l'or et l'argent, aussi bien sous forme anion que cation. Les motifs de fragmentation des complexes de métaux du groupe cuivre sont étudiés et comparés à la chimie de synthèse en phase liquide. Par ailleurs, grâce à des modifications du montage expérimental, nous sommes capables d'étudier la réactivité en phase gazeuse des métaux des groupes cuivre et nickel avec les oxydes de carbone (CO) et oxydes d'azote (NO). La simple absorption du CO sur les agrégats métalliques est observée, ainsi que quelques réactions chimiques. Enfin, les complexes M2+ et M2H+ (avec M=Ag, Au, Pd, Pt) sont examinés en détail en terme de réactivité et du rôle de l'hydrogène dans la stabilisation du complexe / We describe the development of a new laser ablation nanocluster source which couples laser vaporization with electrospray ionization. With it we are able to produce many new species of metal clusters and study them with mass spectrometry, as well as investigate their reactivity in the gas phase. Stoichiometries of new species are investigated as a function of electrospray plume composition. We find that the presence of thiol ligands in the electrospray inhibits the oxidation of metal clusters in the atmosphere. Additionally, the stability and fragmentation patterns of bare metal clusters and their oxides, are investigated, with emphasis on differences and similarities between gold and silver, both for anions and cations. Fragmentation patterns of ligated complexes of the copper-group metals are studied as well and compared to the wet chemistry synthesis. By additional modification of the experimental setup, we are able to study gas phase reactivity of copper and nickel group metals with CO and NO. Simple adsorption of CO to metal clusters is observed, as well as some chemical reactions. The M2+ and M2H+ (M=Ag, Au, Pd, Pt) complexes are examined in detail in terms of reactivity and the role of hydrogen in stabilization of the complex
8

Laser flash photolysis studies of halogen atom reactions of atmospheric interest

Laine, Patrick L. 24 October 2011 (has links)
The Earth's atmosphere is a large photochemical reactor consisting primarily of N2 (~78%) and O2 (~21%) with Ar and water vapor being the next most abundant constituents. All of the remaining gases in the atmosphere are referred to as 'trace gases', and they play a critical role in understanding climate change, urban air quality, ozone production and depletion, and in determining the overall 'health' of the atmosphere. These trace components are present in our atmosphere with mixing ratios, i.e., mole fractions, ranging from sub parts per trillion to several hundred parts per million. One class of trace constituents that play a critical role in atmospheric chemistry are free radicals. Free radicals are highly reactive, often initiating the oxidation of natural and anthropogenic atmospheric species, thereby often controlling the fate and lifetimes of these species. The research comprising this dissertation focuses on laboratory studies of the kinetics and mechanisms of free radical (atomic halogen) reactions that can impact the levels of important trace atmospheric species. In the studies reported herein, laser flash photolysis (LFP) was coupled with time resolved atomic resonance fluorescence (RF) spectroscopic detection of Cl or Br atoms to investigate halogen atom chemistry. The research addresses three groups of reactions: Cl atom reactions with alkyl bromides, Cl and Br-initiated oxidations of small (C2-C6) alkenes, and Cl reactions with CH3SCH3 (DMS, dimethylsulfide) and CH3SeCH3 (DMSe, dimethylselenide). The alkyl bromide reactions were experimentally unique in that we were able to deduce kinetics of the Cl atom reaction with bromoethane, n-bromopropane, and 1,2-dibromoethane by monitoring the appearance of the Br product by LFP-RF. The Br is formed via elimination that occurs essentially instantaneously following β-H abstraction by the Cl atom. All three of the bromoalkanes investigated are emitted into the atmosphere primarily from anthropogenic sources and all three have been identified by the World Meteorological Organization (WMO) as very short-lived (lifetime less than 6 months) source gases with significant ozone depletion potentials (ODPs). Additionally, the bromoalkanes mentioned above have been of interest as model compounds for larger partially halogenated organics found in the atmosphere, and they have been considered as potential replacement compounds for chlorofluorocarbons (CFCs) that have been banned as a result of the Montreal Protocol. Brominated very short-lived compounds are thought to contribute 20-25% of total stratospheric bromine. Thus, there is considerable interest in understanding the atmospheric chemistry of even the most short-lived organic bromine compounds. Temporal profiles of Br atoms provided important kinetic and mechanistic insight for the reactions over a wide range of temperature and pressure. Temperature-dependent rate coefficients are determined for the alkyl bromides of interest for the first time, and the potential importance of the Cl reaction as an atmospheric degradation pathway for each alkyl bromide is qualitatively assessed. The studies of halogen atom reactions with alkenes focused on formation of weakly-bound adducts where kinetics of adduct formation and dissociation as well as non-adduct forming channels were evaluated. The elementary steps in the Br initiated oxidation of the alkenes 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-2-butene (tetramethylethylene, TME), and 1,3-butadiene have been investigated. The experimental kinetic database for these reactions is quite sparse. The kinetic results reported herein, suggests that Br reaction with the above olefins is much faster than previously thought. Analysis of the temperature dependence of the "approach to equilibrium" kinetic data in conjunction with electronic structure calculations allows for determination of enthalpy and entropy changes associated with each addition reaction. Where possible, both forward addition and reverse dissociation channels as well as H-abstraction pathways were characterized. The enthalpy change associated with the addition reaction to give the Br−isoprene and Br−1,3-butadiene adducts has been determined for the first time and the bond dissociation enthalpy obtained for the Br−TME adduct is in reasonable agreement with the only other previously reported value. It should be noted that in the case of isoprene and 1,3-butadiene, there are multiple possible adducts that could be formed. In order to help clarify which adducts are more or less likely to be formed, we rely on electronic structure calculations (see Chapter 5) to aid in our overall understanding of the adduct forming channels. Furthermore, for the Br reactions with the three alkenes above, atomic Br kinetics have been monitored directly both in the absence and in the presence of O2 which allowed, for the first time, determination of rate coefficients for the elementary steps in the overall complex mechanism including determination of the Br−olefin + O2 rate coefficient. Also included in this group of reactions is the chlorine reaction with isoprene. In addition to the well-known fact that isoprene is emitted into the atmosphere from vegetation, a potentially significant marine source of isoprene has received considerable attention. Chlorine has long been thought to exist primarily in marine environments, however, recent findings also suggest a significant Cl production rate in the middle of the continental United States. There are numerous room temperature kinetic studies for the Cl + isoprene reaction in the literature, however, there is only one temperature dependent study reported. Current recommended 298 K rate coefficients for isoprene reactions suggest the Cl reaction is ~ 4x faster than the analogous OH reaction. If indeed this is the case, the Cl reaction could play a non-neglibible role in isoprene oxidation in atmospheric locales where Cl concentrations are relatively high. In addition, the C−Cl bond strength in Cl−C5H8 is obtained from direct measurements of the forward and reversible addition rate coefficients. Our results are compared with the literature data, and the potential importance of Cl-initiated oxidation as an atmospheric sink for isoprene is assessed. The final group of reactions investigated involves reactions of Cl with DMS and DMSe. DMS and DMSe are the most prevalent sulfur and selenium compounds emitted to the atmosphere from the oceans. The oxidation of DMS has been studied extensively due to the interest in the possible role of DMS oxidation in the formation of sulfate aerosols, however, DMSe oxidation processes have hardly been studied at all. And, DMSe oxidation products are likely to be less volatile than the analogous DMS species. Selenium is an essential nutrient for many plants and animals; however, there is a fine line between enough and excess selenium which can be toxic. Most studies suggest that atmospheric deposition is an important source of Se contamination, and it is therefore critical to evaluate the source emissions and fate of Se in the atmosphere. Since the majority of atmospheric Se exists in the form of DMSe, determination of the kinetics and oxidation mechanisms of DMSe will go a long way towards understanding the global biogeochemical cycle of Se. Both reversible addition and H-abstraction pathways have been characterized, and the first experimental determination of bond strength of the gas-phase DMS−Cl and DMSe−Cl adducts have been obtained.
9

Quantendynamik von S>N2-Reaktionen / Quantum Dynamics of SN2 Reactions

Hennig, Carsten 01 November 2006 (has links)
No description available.
10

Procédé d'élimination de la pollution de l'air par traitement photocatalytique : application aux COVs / Remediation process of air polllution using photocatalytic treatment : study of VOCs

Vincent, Guillaume 04 September 2008 (has links)
L’oxydation photocatalytique des Composés Organiques Volatils (COVs) apparaît comme un procédé très prometteur pour la réduction de la pollution atmosphérique. Ce travail avait pour objectif d’étudier l’oxydation photocatalytique de plusieurs COVs au sein d’un réacteur annulaire: méthyléthylcétone (MEK), acétone, 1-propanol ou encore triéthylamine (TEA). Dans une première partie, l’influence de plusieurs paramètres cinétiques tels que la concentration en polluant, l’intensité lumineuse, le temps de contact et le taux d’humidité a été étudiée. Un mécanisme de dégradation photocatalytique a été établi pour chaque polluant en fonction des sous-produits détectés par GC/MS. Dans une seconde partie, la diffusion de radicaux hydroxyles OH• dans la phase gazeuse, après activation photonique du TiO2, a été mise en évidence par Fluorescence Induite par Laser (LIF). Pour la première fois, ces radicaux OH• ont été détectés à des pressions proches des conditions atmosphériques. Dans ce cas, nous pouvons en conclure que la dégradation photocatalytique des COVs pourrait être partiellement due à une réaction en phase gazeuse entre les COVs et les radicaux OH• / Photocatalytic oxidation of airborne contaminants appears to be a promising process for remediation of air polluted by Volatile Organic Compounds (VOCs). The aim of our study is the photocatalytic oxidation of several VOCs using an annular reactor: methylethylketone (MEK), acetone, 1-propanol and triethylamine (TEA). First, the influence of different kinetic parameters such as pollutant concentration, incident light irradiance, contact time and humidity has been studied. A mechanistic pathway has been indeed proposed for each pollutant according to the produced intermediates species detected by GC/MS. Second, the diffusion of hydroxyls radicals OH• in gas phase, after photonic activation of TiO2, has been highlighted using Laser-Induced Fluorescence (LIF). For the first time, OH• radicals have been detected at atmospheric pressures, close to the major photocatalytic oxidation conditions, leading to the assumption that the photocatalytic degradation of VOCs might be at least partially occurs between pollutants and OH• radicals in gas-phase

Page generated in 0.1124 seconds