• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 11
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 43
  • 8
  • 8
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Propriétés thermiques et électriques de composites à base de nanotubes de carbone et application à la détection de gaz / Thermal and electrical properties of composites based on carbon nanotubes and its application to gas detection

Boulerouah, Aoumeur 26 November 2011 (has links)
Les nanomatériaux suscitent depuis quelques décennies de plus en plus d’intérêt tant sur le plan des études fondamentales que sur celui des applications. Parmi ces nouveaux matériaux, les nanotubes de carbone ont attiré beaucoup d’attention au sein de la communauté scientifique à cause de leurs propriétés physiques remarquables. Les travaux présentés dans cette thèse, concernent l’élaboration et la caractérisation de composites solides à base de nanotubes de carbone. Le choix des matériaux s’est porté sur une matrice solide à base de Bromure de Potassium (KBr) et des nanotubes de carbone mono et multifeuillets (SWNT, MWNT). L’étude de ces composites concerne deux aspects : dans un premier temps, l’effet de la charge et de la nature des nanotubes de carbone sur les propriétés électriques et thermiques ont été étudiés. L’étude des propriétés thermiques a été réalisée à l’aide d’une technique photothermique, la photoacoustique, qui présente un grand avantage pour ce type de composites. L’évolution des propriétés thermiques en fonction de la charge a montré un comportement atypique, une augmentation puis une diminution, avec un maximum autour de 2% de charge en nanotubes. Un modèle physique permettant de décrire cette évolution a été proposé. Concernant les propriétés électriques, cette étude a permis de mettre en évidence le phénomène de percolation et d’en déterminer le seuil. Dans un deuxième temps, l’étude a porté sur l’influence du gaz environnant sur les propriétés thermiques et électriques, et sur l’éventuelle utilisation de ces composites comme capteurs de gaz. La caractérisation thermique en présence d’éthanol n’a pas permis de mettre en évidence un changement notable des propriétés thermiques des composites. En revanche, la caractérisation électrique a montré une bonne réponse à ce gaz. L’évolution de la sensibilité en fonction de la charge en nanotubes dans les composites a montré une augmentation pour des charges inférieures à 4% et une stabilisation au-delà. L’influence d’autre gaz comme le dioxyde d’azote et le toluène a été aussi étudié. La réponse électrique au dioxyde d’azote a montré une forte interaction du gaz avec les composites. La réponse au toluène n’a pas montré d’influence de ce gaz sur les propriétés électriques des composites à base de SWNT, cependant, dans le cas des composites à base de MWNT, une réponse électrique comparable à celle de l’éthanol a été observée. / In the recent decades, nanomaterials arouse a growing interest both in their fundamental studies and in their applications. Among these new materials, carbon nanotubes have attracted much attention within the scientific community because of their remarkable physical properties.The work presented in this thesis, involve the preparation and characterization of solid composites based on carbon nanotubes. A solid matrix containing potassium bromide (KBr) and carbon nanotubes, single and multiwalled (SWNT, MWNT) was chosen. The study of these composites involves two aspects: initially, the effect of the loading fraction and the nature of carbon nanotubes on the electrical and thermal properties were investigated. The study of thermal properties was carried out by a photothermal technique, the photoacoustic, which offers great advantages for this type of composites. The evolution of thermal properties according to the loading fraction of nanotubes showed an atypical behavior, an increase followed by a decrease, with a maximum around 2% of nanotubes loading fraction. A physical model describing this evolution has been proposed. Regarding the electrical properties, this study has highlighted the phenomenon of percolation and allowed the determination of the percolation threshold. In a second step, the study focused on the influence of surrounding gas on the thermal and electrical properties, and the possible use of these composites as gas sensors. The thermal characterization with ethanol did not reveal a significant change in thermal properties of composites. However, the electrical characterization showed a good response to this gas. The evolution of the sensitivity depending on the nanotubes loading fraction in the composites showed an increase for loads below 4% and a stabilization beyond this value. The influence of other gases such as nitrogen dioxide and toluene were also studied. The electrical response to nitrogen dioxide showed a strong interaction of the gas with composites. The response to toluene did not show any influence of this gas on the electrical properties of SWNT-based composites, however, in the case of MWNT-based composite, an electrical response similar to that of ethanol was observed.
22

Development of high temperature SiC based field effect sensors for internal combustion engine exhaust gas monitoring

Wingbrant, Helena January 2003 (has links)
While the car fleet becomes increasingly larger it is important to lower the amounts of pollutants from each individual diesel or gasoline engine to almost zero levels. The pollutants from these engines predominantly originate from high NOx emissions and particulates, in the case when diesel is utilized, and emissions at cold start from gasoline engines. One way of treating the high NOx levels is to introduce ammonia in the diesel exhausts and let it react with the NOx to form nitrogen gas and water, which is called SCR (Selective Catalytic Reduction). However, in order to make this system reduce NOx efficiently enough for meeting future legislations, closed loop control is required. To realize this type of system an NOx or ammonia sensor is needed. The cold start emissions from gasoline vehicles are primarily due to a high light-off time for the catalytic converter. Another reason is the inability to quickly heat the sensor used for controlling the air-to-fuel ratio in the exhausts, also called the lambda value, which is required to be in a particular range for the catalytic converter to work properly. This problem may be solved utilizing another, more robust sensor for this purpose. This thesis presents the efforts made to test the SiC-based field effect transistor (SiC-FET) sensor technology both as an ammonia sensor for SCR systems and as a cold start lambda sensor. The SiC-FET sensor has been shown to be highly sensitive to ammonia both in laboratory and engine measurements. As a lambda sensor it has proven to be both sensitive and selective, and its properties have been studied in lambda stairs both in engine exhausts and in the laboratory. The influence of metal gate restructuring on the linearity of the sensor has also been investigated. The speed of response for both sensor types has been found to be fast enough for closed loop control in each application. / <p>On the day of the public defence of the doctoral thesis, the status of article III was: in press. Report code: LiU-Tek-Lic-2003:50.</p>
23

Development of high temperature SiC based field effect sensors for internal combustion engine exhaust gas monitoring

Wingbrant, Helena January 2003 (has links)
<p>While the car fleet becomes increasingly larger it is important to lower the amounts of pollutants from each individual diesel or gasoline engine to almost zero levels. The pollutants from these engines predominantly originate from high NO<sub>x</sub> emissions and particulates, in the case when diesel is utilized, and emissions at cold start from gasoline engines. One way of treating the high NO<sub>x</sub> levels is to introduce ammonia in the diesel exhausts and let it react with the NO<sub>x</sub> to form nitrogen gas and water, which is called SCR (Selective Catalytic Reduction). However, in order to make this system reduce NO<sub>x</sub> efficiently enough for meeting future legislations, closed loop control is required. To realize this type of system an NO<sub>x</sub> or ammonia sensor is needed. The cold start emissions from gasoline vehicles are primarily due to a high light-off time for the catalytic converter. Another reason is the inability to quickly heat the sensor used for controlling the air-to-fuel ratio in the exhausts, also called the lambda value, which is required to be in a particular range for the catalytic converter to work properly. This problem may be solved utilizing another, more robust sensor for this purpose.</p><p>This thesis presents the efforts made to test the SiC-based field effect transistor (SiC-FET) sensor technology both as an ammonia sensor for SCR systems and as a cold start lambda sensor. The SiC-FET sensor has been shown to be highly sensitive to ammonia both in laboratory and engine measurements. As a lambda sensor it has proven to be both sensitive and selective, and its properties have been studied in lambda stairs both in engine exhausts and in the laboratory. The influence of metal gate restructuring on the linearity of the sensor has also been investigated. The speed of response for both sensor types has been found to be fast enough for closed loop control in each application.</p> / On the day of the public defence of the doctoral thesis, the status of article III was: in press. Report code: LiU-Tek-Lic-2003:50.
24

Studies of MISiC-FET sensors for car exhaust gas monitoring

Wingbrant, Helena January 2005 (has links)
The increasing size of the car fleet makes it important to find ways of lowering the amounts of pollutants from each individual diesel or gasoline engine to almost zero levels. The pollutants from these engines predominantly originate from emissions at cold start, in the case when gasoline is utilized, and high NOx emissions and particulates from diesel engines. The cold start emissions from gasoline vehicles are primarily due to a high light-off time for the catalytic converter. Another reason is the inability to quickly heat the sensor used for controlling the air-to-fuel ratio in the exhausts, also called the lambda value, which is required to be in a particular range for the catalytic converter to work properly. This problem may be solved utilizing another, more robust sensor for this purpose. One way of treating the high NOx levels from diesel engines is to introduce ammonia in the exhausts and let it react with the NOx in a special catalytic converter to form nitrogen gas and water, which is called SCR (selective catalytic reduction). However, in order to make this system reduce NOx efficiently enough for meeting future legislations, closed loop control is required. To realize this type of system an NOx or ammonia sensor is needed. This thesis presents the efforts made to test the SiC-based field effect sensor device both as a cold start lambda sensor for gasoline engines and as an NH3 sensor for SCR systems in diesel engines. The MISiC (metal insulator silicon carbide) lambda sensor has proven to be both sensitive and selective to lambda, and its properties have been studied in lambda stairs both in gasoline engine exhausts and in the laboratory. There is, however, a small cross-sensitivity to CO. The influence of metal gate restructuring on the linearity of the sensor has also been investigated. The metal tends to form islands by time, which decreases the catalytic activity and thereby gives the sensor, which is binary when fresh, a linear behavior. Successful attempts to prevent the restructuring through depositing a protective layer of insulator on top of the metal were made. The influence of increasing the catalytic activity in the measurement cell was also studied. It was concluded that the location of the binary switch point of MISiC lambda sensors could be moved towards the stoichiometric value if the consumption of gases in the measurement cell was increased. The MISiC NH3 sensor for SCR systems has been shown to be highly sensitive to ammonia both in laboratory and diesel engine measurements. The influence of other diesel exhaust gas components, such as NOx, water or N2O has been found to be low. In order to make the ammonia sensor more long-term stable experiments on samples with different types of co-sputtered Pt or Ir/SiO2 gas-sensitive layers were performed. These samples turned out to be sensitive to NH3 even though they were dense and NH3 detection normally requires porous films. The speed of response for both sensor types has been found to be fast enough for closed loop control in each application. / On the day of the ublic defence of the doctoral thesis, the status of article IV was: accepted, article V was: submitted and article VII was: manuscript.
25

Mid-infrared diagnostics of the gas phase in non-thermal plasma applications

Raja Ibrahim, Raja Kamarulzaman Kamarulzaman January 2012 (has links)
This thesis focuses on the utilisation of mid-infrared techniques in technological atmospheric pressure, non-thermal plasma (NTP) diagnostics. Two mid-infrared techniques were demonstrated in this work namely laser absorption and Fourier transform infrared (FTIR) spectroscopy. The performance of external-cavity quantum cascade laser (EC-QCL), a relatively new laser type with broad tuning capability was also demonstrated as potential diagnostics tool for technological NTP applications. A dual plate dielectric barrier discharge (DBD) and a packed-bed NTP reactor were designed and fabricated to perform plasma process. Quantitative analysis of the laser absorption and FTIR spectroscopy techniques for gas detection were validated by using standard gas samples. Real-time CO monitoring by means of in-situ laser absorption spectroscopy measurements were performed for gas phase diagnostics in the decomposition of TEOS by means of plasma-enhanced chemical vapour deposition (PE-CVD) and in CO2 reforming of CH4 by means of NTP. In-line FTIR measurements simultaneously recorded the gas spectrum at the exhaust of the plasma reactors. Information from both measurements was found to provide useful information on the plasma processes and chemistry for the NTP applications. Finally, wavelength stability and linearity performance of a broad tuning range EC-QCL were evaluated by using the Allan variance technique. (LOD) at SNR = 1 was estimated to be ~ 2 ppm, achieved under atmospheric pressure, at the room temperature, and a path length of 41 cm for NO detection produced from the decomposition of dichloromethane (DCM) by means of NTP.
26

Photoacoustic CO2 Detection in Biomass Cookstove Applications

Thomas, Jacob Matthew 30 November 2020 (has links)
Billions of people use biomass burning cookstoves in their homes and suffer serious health repercussions. Additionally, global warming is exacerbated by cookstove emissions containing greenhouse gases and particulate matter. Improved cookstoves (ICSs) mitigate the problem, but accurate and affordable emission gas measurements, particularly of Carbon Dioxide (CO2) and Carbon Monoxide (CO), are required in order to confidently declare ICSs cleaner burning than traditional cookstoves. The aim of this research is to assess the suitability of photoacoustic (PA) CO2 detection technology for cookstove emissions monitoring. The designs of several longitudinally resonant, photoacoustic, LED, CO2 sensors of varying levels of functionality are presented. Three aluminum cell designs allowed the detection of a photoacoustic signal: a 4cm long cylinder with a ~1cm diameter (Design 3), a 3.9cm long cylindrical resonator with ~1in diameter and quarter-acoustic-wavelength buffer volumes (Designs 4a,b), and a 3.7cm long cylinder with ~1in diameter (Design 5). All three cell designs operate in the longitudinal resonant mode via the irradiation of gases inside the PA cell with a 4.3um wavelength LED, driven at an on-off frequency in the kHz range by a square wave from an Arduino. A rudimentary lock-in amplifier (LIA) based on the AD630 was considered, but the SR830 LIA was actually used to extract the desired MEMS microphone signal from noise. Designs 3-4b produced PA signals dominated by wall-absorption, but the final design (Design 5) yielded a resonant PA signal proportional to CO2 concentration. It was discovered that photoacoustic gas detection is challenging to design and set up without extensive experience and equipment. Practical lessons learned are shared. Primary limitations with the presented designs are identified as the extremely low power of the 4.3um LEDs, wall absorption due to insufficient collimation of LED radiation, dependence on temperature, and reliance on an expensive, high performance, lock-in amplifier. Further testing and development of designs like Design 5 (short cylinder with large diameter-to-length ratio) is necessary to evaluate their potential for in-field, real-time CO2 concentration measurement. Though LED PA CO2 sensing was demonstrated to be possible, it is concluded that NDIR CO2 sensors are currently better suited for cookstove use. In addition to photoacoustic detection, a method of detecting CO2 concentration by measuring resonant frequency of the gas cell (The Acoustic Method) is presented.
27

SPECTRAL RESOLUTION IN INFRARED THERMAL IMAGING

Ricardo A de Bastos (17428641) 27 November 2023 (has links)
<p dir="ltr">Thermal radiation is a naturally abundant form of light that is continuously emitted from objects above absolute zero. Because this form of electromagnetic radiation is invisible to the human eye, much of human and machine perception neglects the rich information that is present in infrared energy. By harvesting the spectral and polarimetric characteristics of thermal signals, thermal imaging can deliver an enormous impact to remote sensing, machine perception, autonomous navigation, and biomedical applications. The goal of this thesis is to present numerous techniques that enable the extraction of the vast information available via thermal radiation.</p><p dir="ltr">This thesis investigates a more robust and approachable method of providing spectral and polarimetric resolution to short-wave infrared cameras. Through the application of a liquid crystal interferometer, this research demonstrates an electrically-tunable spectral imaging platform that is compact, robust, cost-effective, and accurate, offering a durable solution for remote sensing and autonomous navigation. This thesis also examines the design of filters specific to the short-wave infrared signature of greenhouse gasses, enabling aerial detection and measurement of greenhouse gas sources via a single filtered image, which can drastically improve the speed and accuracy of monitoring greenhouse gas emissions. In the long-wave infrared regime, this research explores a four-color imaging thermometer, capitalizing on the resolution provided by four spectral bands—in conjunction with the <i>TeX-</i><i>Vision</i><i> </i>temperature-estimation algorithm—to yield unprecedented temperature estimation accuracy that can advance current medical diagnostic practices.</p><p dir="ltr">The examples described in this thesis reveal the breadth of untapped information that is present in thermal radiation, which carries the ability to enhance the way we perceive our surroundings.</p>
28

Synthèse et caractérisation de nouveaux polymères comportant un nombre contrôlé de sites basiques : application à la détection du dioxyde de soufre par des microcapteurs à onde acoustique de surface / Synthesis and characterization of new polymers containing a controlled number of basic sites : application to the detection of sulfur dioxide by surface acoustic wave microsensors

Ben Youssef, Ismaïl 06 October 2010 (has links)
Ce travail a pour objectif de développer de nouveaux microcapteurs à onde acoustique de surface (SAW) capables de détecter le dioxyde de souffre (SO₂) à l’échelle de traces par l’intermédiaire d’une couche sensible à base d’un polymère fonctionnel. Une famille originale de cinq polyuréthaneimides (PUIs) à blocs contenant un nombre contrôlé de sites amines tertiaires de structures différentes a été synthétisée et caractérisée. Ces matériaux présentent des propriétés originales, en solution et à l’état solide, qui sont dues essentiellement à la présence des sites basiques et à la structure à blocs associant des blocs souples polyéthers et des blocs rigides en partie fluorés. Leur excellent caractère filmogène a permis leur application en tant que couche sensible au SO₂ sur des microcapteurs SAW. Deux structures de microcapteurs à onde de Love, bicouche et tri-couche, ont été développées en respectant les conditions de génération de l’onde. La structure bicouche comporte le Quartz-ST 90° comme substrat et l’un des PUIs joue le double rôle de couche guidante et sensible. Cette structure génère bien l’onde de Love mais elle présente une forte sensibilité à la température, inconvénient majeur pour les capteurs de gaz. L’ajout d’une couche guidante à base de ZnO, dans une structure tri-couche, a permis de rendre le dispositif peu sensible à la température et donc compatible avec l’application visée. Les résultats des tests de détection du SO₂ montrent que tous les PUIs étudiés contribuent à une amélioration de la sensibilité comparativement au dispositif sans couche polymère. La présence des sites amines tertiaires conduit à une amélioration importante de la sensibilité qui n’est pas seulement gouvernée par leur basicité mais également par leur encombrement stérique dont le rôle apparaît déterminant / This work aimed at developing new surface acoustic wave (SAW) microsensors capable of detecting traces of sulfur dioxide (SO₂) through a sensitive layer based on a functional polymer. An original family of five polyurethaneimide (PUI) block copolymers containing a controlled number of tertiary amine sites with different chemical structures was synthesized and characterized. These materials exhibited original properties in solution and solid state, which were mainly due to the presence of the basic sites and the block structure combining polyether soft blocks and partially fluorinated hard blocks. Their excellent film-forming character allowed their application as SO₂ sensitive layers on SAW microsensors. Two bi-layer and three-layer structures of Love wave microsensors were developed by respecting the conditions of the Love wave generation. The bi-layer structure included the Quartz ST-90° as the piezoelectric substrate and one of the PUIs acting as both guiding and sensitive layer. This structure generated the Love wave but its high sensitivity to temperature was a major drawback for gas sensors. The addition of a ZnO guiding layer in a three-layer structure led to a microsensor almost insensitive to temperature and thus compatible with the targeted application. The experimental results for SO₂ detection showed that all the PUIs contributed to improve the sensitivity compared to the device without polymer layer. The presence of tertiary amine sites led to a significant improvement in gas sensitivity which was not only governed by their basicity but also by their steric hindrance which played a determining role
29

Multi-species detection using Infrared Multi-mode Absorption Spectroscopy

Northern, Jonathen Henry January 2013 (has links)
This thesis reports work extending the scope of a recently developed gas sensing technique, multi-mode absorption spectroscopy (MUMAS). The ability of MUMAS to simultaneously detect multiple species from a mixture is demonstrated for the first time. The technique is subsequently extended to mid-infrared wavelengths, realising large gains in sensitivity. A solid-state, multi-mode laser has been developed to provide a high-performance comb source for use with MUMAS. This in-house constructed, diode-pumped, Er/Yb:glass laser operates on 10 longitudinal modes, separated by 18 GHz and centred close to 1565 nm. The extensive development and prototyping work leading to this final laser design is described. Multi-species detection with MUMAS is reported for the first time, thus demonstrating the ability of this technique to perform multi-gas sensing using a single laser and simple detection scheme. The previously described Er/Yb multi-mode laser was used to record MUMAS signals from a sample containing CO, C<sub>2</sub>H<sub>2</sub>, and N<sub>2</sub>O. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. Temperature- and pressure-dependent modelled spectral fits to the data were used to determine the partial pressures of each species in the mixture with an uncertainty better than +/-2%. Multi-mode radiation has been successfully generated at 3.3 μm using quasi phase matched difference frequency generation (QPM-DFG). A mid-infrared laser comb was produced by optically mixing the near-infrared, multi-mode comb produced by the previously developed Er/Yb:glass laser with the single-mode output of a Nd:YAG laser operating at 1064 nm. This multi-frequency laser source was characterised to verify performance, and subsequently used to perform proof-of-principle MUMAS measurements on the strong transitions found in this spectral region. Spectra were recorded of NH<sub>3</sub> and CH<sub>4</sub> both individually and as components of a mixture. A minimum detection level for this system was determined to be 4.3 μbar m<sup>-1</sup> for CH<sub>4</sub>, a sensitivity increase of 300 over similar measurements performed in the near-IR.
30

Spectrométrie laser avec sources moyen infrarouge largement accordables et application à la détection de gaz / Laser spectrometry with widely tunable mid-infrared sources and application to gas detection

Bizet, Laurent 14 February 2019 (has links)
La détection de gaz est un domaine d’intérêt pour de nombreuses applications telles que la surveillance de la pollution atmosphérique, la détection d’explosifs, l’analyse des émissions respiratoire de patients, etc... La spectrométrie par lasers accordables permet la réalisation d’instruments compacts et bénéficiant de performances élevées (sélectivité, résolvance et résolution temporelle). Par ailleurs, l’utilisation de lasers à cascade quantique (QCL) permet d’accéder au moyen infrarouge (Mid-IR), où les raies d’absorption des molécules d’intérêt sont plus intenses, ce qui améliore la sensibilité des dispositifs. Les travaux de cette thèse ont porté sur le développement de dispositifs basés sur des QCL pour la détection de gaz. La première partie des travaux porte sur l’exploitation de nouvelles sources Mid-IR telles que les barrettes de QCL multiplexées et les barrettes de QCL cohérents. La seconde partie concerne le développement d’un dispositif intracavité sur lequel une technique de détection par mesure de la tension du laser a été validée. Cette technique possède l’avantage de ne pas nécessiter de détecteur optique et de fonctionner quelle que soit la longueur d’onde du laser. / The field of gas detection is interesting for many applications such as monitoring of air pollution, explosives detection, breath analysis, etc. Tunable laser spectrometry allows to create compact instruments with high performances (selectivity, spectral and temporal resolution). Mid-Infrared (Mid-IR) region can be accessed with the use of Quantum Cascade Laser (QCL). In this region, absorption lines of the molecules of interest are more intense, which improves the devices sensitivity. The work presented in this thesis is focused on the development of QCL-based gas detection devices. First part presents the use of new Mid-IR sources such as multiplexed QCL array and coherent QCL array. Second part is focused on the development of an intracavity setup and a detection technique based on the QCL voltage measurement. This technique does not need the use of an optical detector and can be performed whatever the laser wavelength.

Page generated in 0.1065 seconds