• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 24
  • 17
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 190
  • 190
  • 39
  • 26
  • 25
  • 23
  • 23
  • 21
  • 19
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Sensor capacitivo inteligente para monitoramento de escoamentos bifásicos

Santos, Greg José dos 30 March 2015 (has links)
CAPES; ANP; FINEP; MCT; PETROBRAS / Escoamentos bifásicos são encontrados com frequência, em atividades industriais, como por exemplo, em reatores químicos e nas operações de produção e transporte de petróleo, onde escoamentos do tipo gás-liquido são os mais comuns. Esses são caracterizados pela passagem simultânea de dois fluidos imiscíveis em um duto, podendo tomar diversas formas ao longo da tubulação, chamado de padrão ou regime de escoamento. Em muitos casos, o tipo de escoamento determina a eficiência e segurança dos processos ou plantas onde tais ocorrem. Desta forma, a monitoração em tempo real de escoamentos bifásicos é de grande importância. O objetivo deste trabalho é desenvolver um sensor inteligente para monitoramento de escoamento bifásico. Foram selecionados dois parâmetros importantes de monitoração, o primeiro deles é a fração de gás e o segundo a velocidade de translação de bolhas. Para isso foi desenvolvido uma sonda capacitiva que explora a diferença da permissividade elétrica das fases para diferenciá-las. Além disso, uma eletrônica anteriormente desenvolvida foi aprimorada para tornar possível a medição de dois canais simultaneamente e o firmware modificado para realização do cálculo de fração de vazio e velocidades de forma embarcada. A resposta da sonda capacitiva desenvolvida não depende apenas da proporção volumétrica das fases, mas também da forma que estão distribuídas em seu interior, portanto simulações de campo elétrico pelo método de elementos finitos foram realizadas para o levantamento da resposta do mesmo. A resposta do sensor foi validada através de testes estáticos e em escoamentos em plantas controladas, onde os resultados foram comparados com os obtidos, em medidas simultâneas com o sensor wire-mesh, adotado como referência neste trabalho. Os resultados obtidos mostram que o sensor capacitivo é capaz de medir os parâmetros de forma satisfatória. Assim, este sensor pode ser empregado em trabalhos futuros como ferramenta simples para monitoração de escoamentos bifásicos. / Two-phase flow is frequently found in industrial activities, for instance in chemical reactors or during oil production and transport, where gas-liquid flow type is the most common. Such flow is characterized by the simultaneous passage of two immiscible fluids in a pipe. The fluids may assume various spatial distributions in a pipe, which are classified into flow regimes. In many cases, the type of flow determines the efficiency and safety of the processes or plants in which they occur. The objective of this work is to develop a smart sensor for real-time monitoring of two-phase flows. Here two important monitoring parameters were selected; the first is the gas void fraction and the second translational bubble velocities. To this aim, a capacitive probe was developed that exploits the difference in electrical permittivity of the phases. In addition, a previously developed electronics have been further developed to make it possible to measure two channels simultaneously and the firmware has been modified for performing the calculation of the two parameters directly in the embedded microcontroller. The response of the capacitive probe depends not only on the volume fraction of the phases, but it also depends on the way they are distributed inside the pipe. In order to account for this, electric field simulations by finite element method were performed to survey the sensor responses. The overall sensor response was validated by static tests and controlled flow experiments in a pilot plant. The measurement results were compared with those obtained by simultaneous measurements with a wire-mesh sensor which was adopted as reference in this study. The results show that the capacitive sensor is able of measuring the parameters satisfactorily. Hence, the sensor can be applied in future work as a simple tool for two-phase flows monitoring.
182

Compressible Mixing of Dissimilar Gases

Javed, Afroz January 2013 (has links) (PDF)
This thesis is concerned with the study of parallel mixing of two dissimilar gases under compressible conditions in the confined environment. A number of numerical studies are reported in the literature for the compressible mixing of two streams of gases where (1) both the streams are of similar gases at the same temperatures, (2) both the streams are at different temperatures with similar gases, and (3) dissimilar gases are with nearly equal temperatures. The combination of dissimilar gases at large temperature difference, mixing under compressible conditions, as in the case of scramjet propulsion, has not been adequately addressed numerically. Also many of the earlier studies have used two dimensional numerical simulation and showed good match with the experimental results on mixing layers that are inherently three dimensional in nature. In the present study, both two-dimensional (2-d) and three dimensional (3-d) studies are reported and in particular the effect of side wall on the three dimensionality of the flow field is analyzed, and the reasons of the good match of two dimensional simulations with experimental results have been discussed. Both two dimensional and three dimensional model free simulations have been conducted for a flow configuration on which experimental results are available. In this flow configuration, the mixing duct has a rectangular cross section with height to width ratio of 0.5. In the upper part of the duct hydrogen gas at a temperature of 103 K is injected through a single manifold of two Ludweig tubes and in the lower part of the duct nitrogen gas at a temperature of 2436 K is supplied through an expansion tube, both the gases are at Mach numbers of 3.1 and 4.0 respectively. Measurements in the experiment are limited to wall pressures and heat flux. The choice of this experimental condition gives an opportunity to study the effect of large temperature difference on the mixing of two dissimilar gases with large molecular weights under compressible conditions. Both two dimensional and three dimensional model free simulations are carried out using higher order numerical scheme (4th order spatial and 2nd order temporal) to understand the structure and evolution of supersonic confined mixing layer of similar and dissimilar gases. Two dimensional simulations are carried out by both SPARK (finite difference method) and OpenFOAM (finite volume method based open source software that was specially picked out and put together), while 3D model free simulations are carried out by OpenFOAM. A fine grid structure with higher grid resolution near the walls and shear layer is chosen. The effect of forcing of fluctuations on the inlet velocity shows no appreciable change in the fully developed turbulent region of the flow. The flow variables are averaged after the attainment of statistical steady state established through monitoring the concentration of inert species introduced in the initial guess. The effect of side wall on the flow structure on the mixing layer is studied by comparing the simulation results with and without side wall. Two dimensional simulations show a good match for the growth rate of shear layer and experimental wall pressures. Three dimensional simulations without side wall shows 14% higher growth rate of shear layer than that of two dimensional simulations. The wall pressures predicted by these three dimensional simulations are also lower than that predicted using two dimensional simulations (6%) and experimental (9%) results in the downstream direction of the mixing duct. Three dimensionality of the flow is thought of as a cause for these differences. Simulations with the presence of side wall show that there is no remarkable difference of three dimensionality of the flow in terms of the variables and turbulence statistics compared to the case without side walls. However, the growth rate of shear layer and wall surface pressures matches well with that predicted using two dimensional simulations. It has been argued that this good match in shear layer growth rate occurs due to formation of oblique disturbances in presence of side walls that are considered responsible for the decrease in growth rate in 3-d mixing layers. The wall pressure match is argued to be good because of hindrance from side wall in the distribution of momentum in third direction results in higher wall pressure. The effect of dissimilar gases at large temperature difference on the growth rate reduction in compressible conditions is studied. Taking experimental conditions as baseline case, simulations are carried out for a range of convective Mach numbers. Simulations are also carried out for the same range of convective Mach numbers considering the mixing of similar gases at the same temperature. The normalized growth rates with incompressible counterpart for both the cases show that the dissimilar gas combination with large temperature difference shows higher growth rate. This result confirms earlier stability analysis that predicts increased growth rate for such cases. The growth rate reduction of a compressible mixing layer is argued to occur due to reduced pressure strain term in the Reynolds stress equation. This reduction also requires the pressure and density fluctuation correlation to be very near to unity. This holds good for a mixing layer formed between two similar gases at same temperature. For dissimilar gases at different temperatures this assumption does not hold well, and pressure-density correlation coefficient shows departure from unity. Further analysis of temperature density correlation factor, and temperature fluctuations shows that the changes in density occur predominantly due to temperature effects, than due to pressure effects. The mechanism of density variations is found to be different for similar and dissimilar gases, while for similar gases the density variations are due to pressure variations. For dissimilar gases density variation is also affected by temperature variations in addition to pressure variations. It has been observed that the traditional k-ε turbulence model within the RANS (Reynolds Averaged Navier Stokes) framework fails to capture the growth rate reduction for compressible shear layers. The performance of k-ε turbulence model is tested for the mixing of dissimilar gases at large temperature difference. For the experimental test case the shear layer growth rate and wall pressures show good match with other model free simulations. Simulations are further carried out for a range of convective Mach numbers keeping the mixing gases and their temperatures same. It has been observed that a drop in the growth rate is well predicted by RANS simulations. Further, the compressibility option has been removed and it has been observed that for the density and temperature difference, even for incompressible case, the drop in growth rate exists. This behaviour shows that the decrease in growth rate is mainly due to the interaction of temperature and species mass fraction on density. Also it can be inferred that RANS with k-ε turbulence model is able to capture the compressible shear layer growth rate for dissimilar gases at high temperature difference. The mixing of heat and species is governed by the values of turbulent Prandtl and Schmidt numbers respectively. These numbers have been observed to vary for different flow conditions, while affecting the flow field considerable in the form of temperature and species distribution. Model free simulations are carried out on an incompressible convective Mach number mixing layer, and the results are compared with that of a compressible mixing layer to study the effect of compressibility on the values of turbulent Prandtl / Schmidt numbers. It has been observed that both turbulent Prandtl and Schmidt numbers show an almost constant value in the mixing layer region for incompressible case. While, for a compressible case, both turbulent Prandtl and Schmidt numbers show a continuous variation within the mixing layer. However, the turbulent Lewis number is observed to be near unity for both incompressible and compressible cases. The thesis is composed of 8 chapters. An introduction of the subject with critical and relevant literature survey is presented in chapter 1. Chapter 2 describes the mathematical formulation and assumptions along with solution methodology needed for the simulations. Chapter 3 deals with the two and three dimensional model free simulations of the non reacting mixing layer. The effect of the presence of side wall is studied in chapter 4. Chapter 5 deals with the effect of compressibility on the mixing of two dissimilar gases at largely different temperatures. The performance of k-ε turbulence model is checked for dissimilar gases in Chapter 6. Chapter 7 is concerned with the effect of compressibility on turbulent Prandtl and Schmidt numbers. Finally concluding remarks are presented in chapter 8. The main aim of this thesis is the exploration of parallel mixing of dissimilar gases under compressible conditions for both two and three dimensional cases. The outcome of the thesis is (a) a finding that the presence of sidewall in a mixing duct does not make flow field two dimensional, instead it causes the formation of oblique disturbances and the shear layer growth rate is reduced, (b) that it has been shown that the growth rates of dissimilar gases are affected far more by large temperature difference than by compressibility as in case of similar gases, (c) that the growth rates of compressible shear layers formed between dissimilar gases are better predicted using k-εturbulence model and (d) that for compressible mixing conditions the turbulent Prandtl and Schmidt numbers vary continuously in the mixing layer region necessitating the use of some kind of model instead of assuming constant values.
183

Numerický model zavzdušňovacího ventilu / Numerical model of air valve

Luňák, Pavel January 2017 (has links)
This diploma thesis deals the formation of water hammer in pipes and the suppress the nega-tive effects especially for the use of protective devices (surge tank, air chamber, air valve and other). The special attention is paid to the use of the air valve, for which it was developed mathematical model. The solution is based on the use of numerical methods Lax-Wendroff with boundary conditions for the air valve.The numerical results are confronted with the ex-periment in conclusion.
184

Scintilační detektor sekundárních elektronů s řízeným prouděním plynů pro EREM / Scintillation SE Detector with Controlled Gas Flow for VP SEM

Kozák, Josef January 2009 (has links)
This master’s thesis deals with a design and optimization of an experimental scintillation secondary electron detector for the environmental scanning electron microscope and with a description of a detector operation principle. The experiment is founded on simulations of a gas flow in detector inner sections and on simulations of secondary electron trajectories in electrostatic fields of the detector. On the basis of the simulations, new solutions of the detector designs are proposed. For these designs, same simulations as previous are performed and designs that seem to be feasible for the secondary electron detection in environmental scanning electron microscope are selected.
185

The economics and regulation of natural gas pipeline networks : four essays on the impact of demand uncertainty / Économie et régulation du réseau de transport de gaz naturel : quatre essais sur les conséquences de l’incertitude de la demande

Perrotton, Florian 01 December 2017 (has links)
Cette thèse vise à développer les opportunités et conséquences d’une demande incertaine pour le réseau de transport de gaz. Ce sujet est décliné en quatre contributions. Les deux premières adoptent une perspective de long terme : on cherche à évaluer l’efficacité de la réglementation du taux rendement lorsqu’il s’agit d’inciter à la réalisation de projets d’infrastructures gazières dans des pays en développement. Une première contribution analytique présente le développement d’une représentation simplifiée du réseau de transport de gaz, de forme Cobb-Douglas. Inspiré par les projets d’acheminement de gaz naturel au Mozambique, celle-ci est ensuite utilisée pour évaluer dans quelles conditions il est possible pour une autorité de régulation de choisir un taux de rendement régulé qui améliore l’efficacité du système dans le cas où la demande réelle serait plus importante que la demande anticipée par la firme régulée. A moyen terme ensuite, l’efficacité face à une demande de plus en plus variable de la structure tarifaire actuelle dite « entrée-sortie » pour l’accès au réseau européen est évaluée. Après avoir démontré l’existence d’inefficacités dans un tel système, celles-ci sont évaluées numériquement. Enfin, la dernière contribution explore la possibilité d’offrir directement la flexibilité du réseau de transport de gaz à ses utilisateurs, dans le cadre d’enchères et du système de prix nodaux. Après avoir souligné la complexité d’un tel mécanisme, les limites à son efficacité sont présentées. A chaque fois, l’analyse repose sur la modélisation simultanée du réseau de transport de gaz (en régime statique ou transitoire) et des mécanismes économiques en jeu. / This PhD thesis is centered on the opportunities and impact of demand uncertainty for the gas transport networks. We study the ability of various market designs to foster an efficient network allocation in liberalized gas markets when demand is variable or uncertain. We introduce and solve operation research models that bind an economic representation of the gas market and its associated regulation, to a technical representation of the gas network. The complex interactions at stake in liberalized gas markets, where shippers trade gas for its economic value and coordinate with system operators that allocate and operate the network, result in MCP or MPEC formulations. While a detailed network representation is necessary to assess the feasibility of gas flows under any market organization, the physics and engineering of gas transport networks adds non-linearities and non-convexities to those already challenging formulations. This thesis is divided in four contributions. We first introduce an approximated network representation of the Cobb-Douglas form and use it to study the impact of long-term demand uncertainty on investment problems in developing markets subject to rate-of-return regulation. We then study the effect of demand variability on daily gas dispatch in the European Entry-Exit system, using a linearized steady-state network representation. Finally, we assess the benefits of introducing flexibility products in gas locational marginal pricing auctions to handle intraday demand uncertainty. This requires the use of a linearized transient network formulation to account for linepack dynamics.
186

Parametrisation of Gas Flares Using FireBIRD Infrared Satellite Imagery

Soszynska, Agnieszka Kazimiera 03 September 2021 (has links)
Bei der Förderung von Erdöl wird auch Erdgas gefördert, das oft abgefackelt wird. Das Abfackeln von Erdgas ist sehr schädlich für die Umwelt und die Bewohner einer Umgebung in der Gas abgefackelt wird. Demzufolge ist die Reduktion dieses Prozesses eine wichtige Aufgabe, die durch Monitoring von Gasfackeln unterstützt werden kann. Dies gelingt am besten durch Fernerkundung mit Satellitendaten. Die vorliegende Dissertation widmet sich der Parametrisierung von Gasfackeln anhand von Infrarot-Satellitenaufnahmen. Eine Gruppe von Sensoren wurde verglichen, woraus optimale Eigenschaften eines Sensors zur Gasfackelanalyse abgeleitet wurden. Danach wurde ein Modell zur Berechnung des Gasflusses aus Infrarot-Satellitenaufnahmen entwickelt. Das vorgeschlagene Modell basiert auf der Physik der Verbrennung und wird von Teilmodellen zur Berechnung der Verbrennungsparameter unterstütz. Dadurch werden Prozesse mitberücksichtigt, die bisher in der Gasfackelforschung wenig adressiert wurden. Eine Experimentenreihe erlaubte eine Charakterisierung der Flamme in Bezug auf sich verändernde Bedingungen, z.B. Gasfluss. Zusätzlich wurde das Modell durch die Experimente validiert. Die abgeleitete Genauigkeit der Gasflusswerte ist verhältnismäßig hoch, insbesondere wenn man die Komplexität und Variabilität einer Gasflamme berücksichtigt. Durch Analysieren des Sensordesigns des BIROS Sensors aus der FireBIRD-Mission des Deutschen Zentrums für Luft- und Raumfahrt konnten die Sensorparameter charakterisiert und deren Einfluss auf ein abgeleitetes Bildprodukt quantifiziert werden. Die Fähigkeit des Modells mit unterschiedlichen Sensordaten zu funktionieren, wurde geprüft durch einen Vergleich der geschätzten Gasflusswerte aus Daten von zwei Satellitensensoren. Die verglichenen Gasflusswerte sind sehr ähnlich, was die Fähigkeit des Models mit unterschiedlichen Daten gut zu funktionieren, bestätigt. Das vorgeschlagene Model hat Potenzial, das globale Monitoring von Gasfackeln zu verbessern. / Routine gas flaring is harmful to the environment and people living in the vicinity of gas flares. Therefore, the reduction of this process is an important task, which can be supported by monitoring of gas flares, which can be done with remote sensing techniques. The presented work is devoted to the monitoring of gas flaring. The first aspect of the analysis was to compare a group of sensors with respect to the features crucial for gas flaring analysis. A set of requirements for an optimal sensor for this purpose was proposed. Next, a model for calculating gas flow from infrared satellite imagery was proposed, which relies on several other models, allowing to derive the values of the combustion parameters. By modelling these parameters in a gas flare, processes are accounted for that were scarcely addressed in the research conducted on gas flaring until now. To describe the characteristics of the flame coming from combustion in a flare, an experimental series was designed and conducted. The experimental series allowed to characterise the flame with respect to changing conditions, e.g. gas flow. Thus, the characteristics derived from the experiments could be included in the model for gas flow calculation. Additionally, the experiments served as a mean to validate the model. The accuracy of the derived gas flow values is relatively high, especially considering the variability of a gas flare flame. One design goal of the model for gas flow calculation was to ensure feasibility to work with data from different sensors producing equally accurate results. By analysing the design of the BIROS sensor of the DLR, the sensor parameters could be described, and their influence on the resulting imagery could be quantified. The feasibility was verified by comparing the gas flow values calculated using data from two different satellite sensors. The results obtained are very similar. The model proposed reveals potential to improve the global monitoring of gas flaring.
187

LES of atomization and cavitation for fuel injectors / Simulation aux grandes échelles de l'atomisation et de la cavitation dans le cadre des injections de carburant

Ahmed, Aqeel 06 September 2019 (has links)
Cette thèse présente la Simulation des Grandes Echelles (LES) de l’injection, de la pulvérisation et de la cavitation dans un injecteur pour les applications liées aux moteurs à combustion interne. Pour la modélisation de l’atomisation, on utilise le modèle ELSA (Eulerian Lagrangian Spray Atomization). Le modèle résout la fraction volumique du combustible liquide ainsi que la densité de surface d’interface liquide-gaz pour décrire le processus complet d’atomisation. Dans cette thèse, l’écoulement à l’intérieur de l’injecteur est également pris en compte pour une étude ultérieure de l’atomisation. L’étude présente l’application du modèle ELSA à un injecteur Diesel typique, à la fois dans le contexte de RANS et de LES.Le modèle est validé à l’aide de données expérimentales disponibles dans Engine Combustion Network (ECN). Le modèle ELSA, qui est normalement conçu pour les interfaces diffuses (non résolues), lorsque l’emplacement exact de l’interface liquide-gaz n’est pas pris en compte, est étendu pour fonctionner avec une formulation de type Volume of Fluid (VOF) de flux à deux phases, où l’interface est explicitement résolu. Le couplage est réalisé à l’aide de critères IRQ (Interface Resolution Quality), qui prennent en compte à la fois la courbure de l’interface et la quantité modélisée de la surface de l’interface. Le modèle ELSA est développé en premier lieu en considérant les deux phases comme incompressibles. L’extension à la phase compressible est également brièvement étudiée dans cette thèse. Il en résulte une formulation ELSA compressible qui prend en compte la densité variable de chaque phase. En collaboration avec l’Imperial College de Londres, la formulation de la fonction de densité de probabilité (PDF) avec les champs stochastiques est également explorée afin d’étudier l’atomisation. Dans les systèmes d’injection de carburant modernes, la pression locale à l’intérieur de l’injecteur tombe souvent en dessous de la pression de saturation en vapeur du carburant, ce qui entraîne une cavitation. La cavitation affecte le flux externe et la formulation du spray. Ainsi, une procédure est nécessaire pour étudier le changement de phase ainsi que la formulation du jet en utilisant une configuration numérique unique et cohérente. Une méthode qui couple le changement de phase à l’intérieur de l’injecteur à la pulvérisation externe du jet est développée dans cette thèse. Ceci est réalisé en utilisant le volume de formulation de fluide où l’interface est considérée entre le liquide et le gaz; le gaz est composé à la fois de vapeur et d’airambiant non condensable. / This thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air.
188

Beeinflussung von geschweißten Auftragschichten durch instationäre Gasströme im Plasma-Pulver-Schweißprozess

Ebert, Lars 17 February 2011 (has links)
In der vorliegenden Arbeit wurde untersucht, wie sich instationäre Plasma- und Fördergasvolumenströme nutzen lassen, um den Plasma-Pulver-Auftragschweißprozess in seiner Gesamtheit zu beeinflussen. Dabei wurden die Veränderungen in der Lichtbogencharakteristik, der Pulverzuführung und insbesondere dem Schmelzbad analysiert und in einem theoretischen Prozessmodell zusammengefasst. Die gewonnenen Ergebnisse und die aufgezeigten Wirkzusammenhänge konnten in der Folge dazu genutzt werden, die Hartstoffverteilung in Pseudolegierungen und den mikrostrukturellen Aufbau geschweißter konventioneller Hartschichten zu modifizieren. / In the present studies it is examined, how unsteady gas flows can be used to modify the plasma transfer arc welding process in its entirety. In the first step it was analysed in which different ways non-steady-state plasma and transport gas flows influence the arc characteristics, the powder transport and the melt bead properties. With the obtained results a theoretical model was developed, to describe the observed behaviours and understand the coherences. Subsequently the preliminary findings were used to alter the distribution of tungsten-carbide in a welded hardface composite coating and to modify the microstructure of a conventional alloy welded with the plasma transfer arc process.
189

Green Anesthesia : Use of Inhalational Anesthetics and their Effect on our Climate / Miljövänlig Anestesi : Användning av inhalationsanestetika och dess påverkan på vårt klimat

Karchut, Sabina, Wedahl, Skylar January 2023 (has links)
This thesis has, commissioned by Dräger, an international company at the forefront of medical and safety technology, examined how the use of inhalational anesthetics affects the climate and environment. The purpose of this work is to examine how the Swedish healthcare sector currently works with inhalational anesthetics, how different anesthetic machines affect the emissions, as well as alternatives available to reduce anesthetic gases emissions. Climate change is a current issue in today’s society, but the impact of anesthetic gases on the climate is not widely known, despite their everyday use in the healthcare sector. Through data collection from two Swedish hospitals; Linköping University Hospital and Örebro University Hospital, an interview with medical and medical engineering staff, as well as a literature study the main question of the thesis could be answered; How do the most common anesthetic gases affect the environment? The results are presented in the form of diagrams showing the amount of anesthetic gas used in the aforementioned hospitals during surgeries. The results have been analyzed and discussed based on the research questions, and the different results from each hospital have been compared to each other. It can be seen that Dräger’s anesthesia machines have a relatively low consumption of sevoflurane, but it is impossible to draw any definitive conclusions due to lack of data, and lack of access to machines from other manufacturers. / Detta examensarbete har, på uppdrag av Dräger, ett internationellt företag i framkant inom medicin- och säkerhetsteknik, undersökt hur användning av inhalationsanestetika påverkar miljön. Målet med arbetet är att undersöka hur den svenska sjukvården för närvarande arbetar med inhalationsanestetika, hur olika anestesimaskiner påverkar utsläppen, samt alternativ som finns tillgängliga för att minska dessa utsläpp. Klimatförändringar är en aktuell fråga i dagens samhälle men påverkan av anestesigaser på klimatet är inte allmänt känt, trots att dessa används dagligen i hälsovården. Genom datainsamling från två svenska sjukhus; Linköpings Universitetssjukhus och Örebro Universitetssjukhus, intervjuer med medicinsk- och medicinteknisk personal, samt en litteraturstudie har arbetets problemställning besvarats; Hur påverkar de mest frekvent använda anestesigaserna miljön? Resultaten visar i diagramform hur mycket anestesi gas som använts i tidigare nämnda sjukhus under operationer. Resultaten har analyserats och diskuterats utifrån forskningsfrågorna, dessutom har de olika resultaten från respektive sjukhus jämförts med varandra. Det kan ses att Drägers anestesimaskiner har en relativt låg konsumtion av sevofluran, men brist på data samt brist på tillgång till maskiner från andra producenter gör det omöjligt att dra en konkret slutsats.
190

Counter-flow Ion Mobility Analysis: Design, Instrumentation, and Characterization

Agbonkonkon, Nosa 14 November 2007 (has links) (PDF)
The quest to achieve high resolution in ion mobility spectrometry (IMS) has continued to challenge scientist and engineers in the field of separation science. The low resolution presently attainable in IMS has continued to negatively impact its utility and acceptance. Until now, efforts to improve the resolution have mainly focused on better instrumentation and detection methods. However, since the resolution of IMS is diffusion limited, it makes sense to address this limitation in order to attain high resolution. This dissertation presents a new IMS technique, which utilizes a high electric field and opposing high gas flow velocity with the aim to improve resolution. This approach essentially reduces the residence time of ions in the analyzer. This new technique is called "counter-flow ion mobility analysis" (CIMA). Theoretical modeling of this new technique predicted that a resolution of over 1000 is possible, which is over one order of magnitude better than that of conventional IMS techniques currently used. A wind tunnel was designed and constructed to produce a plug gas flow profile that is needed for CIMA. The test region of the wind tunnel was used as the CIMA analyzer region and was constructed from power circuit boards, PCBs, (top and bottom walls) and conductive plastic side walls. An inclined electric field was created by applying suitable voltages to multiple electrode traces on the PCBs. This inclined field, when resolved into its x- and y-components, was used to oppose the counter-gas flow and transport the ions to the detector, respectively. The results obtained did not show an improvement over conventional IMS techniques because of a limitation in the voltage that could be applied to the analyzer region. However, the results predict that high resolution is possible if (1) the ratio of the electric fields in the horizontal (x direction) to the vertical (y direction) is within the range of 2--0.5, (2) very high electric field and high gas flow velocities are applied, and (3) wall effects in the counter-flow gas profile are eliminated. While the resolution obtained using the present instrumentation is far from what was predicted, the foundation for ultimately achieving high resolution has been laid. The use of a wind tunnel has made the instrumentation possible. As far as the author knows, this is the first time a wind tunnel has been used in chemical measurement instrumentation. Chapter 5 of this dissertation, reports a method developed for predicting the reduced mobility constants, of chemical compounds. This method uses a purely statistical regression analysis for a wide range of compounds which is different from similar methods that use a neural network. The calculated value for this method was 87.4% when calculated values were plotted against experimental K0 values, which was close to the value for the neural network method (i.e., 88.7%).

Page generated in 0.0657 seconds