• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Extended-gate FET-based Microsensor for Detecting the Carbon Dioxide in Water

Chen , Po-Han 30 July 2012 (has links)
The large carbon dioxides produced by highly developed industries not only result in serious air pollution and health problems, but also cause ocean acidification and decrease the survival rate of fry in aquaculture. Therefore, to develop a system for real-time detection of the concentration of carbon dioxide in aquaculture has become a very important research issue. Optical analysis and gas-chromatography are the two main methods adopted in conventional gas detection. Although the conventional carbon dioxide detectors presented high sensitivity and accuracy, the high fabrication cost, large dimension, low capability of batch fabrication and without real-time monitoring function will limit their applications. This thesis utilizes MEMS technology to implement an extended-gate field-effect transistor (EGFET) with an integrated gas permeable membrane for development of a high-sensitivity, small size and low cost carbon dioxide microsensor. The main material of the carbon dioxide gas permeable membrane adopted in this research is dioctyl sebacate. The main processing steps of the proposed microsensor include four photolithography and four thin-film deposition processes. In addition, the influences of the channel width/length ratio of EGFET and the coating of gas permeable membrane on the sensing performances of presented microsensor are also investigated in this study. The chip size of the implemented carbon dioxide microsensor is 11 mm¡Ñ13 mm¡Ñ 0.5 mm and the sensing area is 1 mm¡Ñ1 mm. As the carbon dioxide concentration varies from 0.25 mM to 50 mM, a very high sensitivity (42.3 mV/ppm) and sensing linearity (99.2%) of the proposed EGFET microsensor can be demonstrated. In addition, the response time of the presented carbon dioxide microsensor is only about 100 seconds, hence it is very suitable for developing a real-time monitoring microsystem.
2

IMPLEMENTATION OF NITROGEN RECOVERY AT WASTEWATER TREATMENT PLANTS TO COMPLEMENT ARTIFICIAL FERTILISER PRODUCTION : An investigation of the nitrogen recovery potential, energy consumption and environmental impacts at Kungsängens wastewater treatment plant in Västerås, Sweden

Kestran, Cassandra, Larsson, Olivia January 2023 (has links)
As Kungsängens wastewater treatment plant is considering a move, it opens up a possibility to implement nitrogen recovery technologies that comply with current and future legislative requirements. Nitrogen recovery offers simultaneous treatment of wastewater and collection of concentrated ammonia products for fertiliser production. This can create a circular and sustainable solution by reduced energy consumption, greenhouse gas emissions and nitrogen pollution. Despite the large amount of research that has been performed on this topic, practical use at wastewater treatment facilities in Sweden are still scarce. The aim of the degree project was to identify nitrogen recovery technologies and investigate their potential impact at a new Kungsängens wastewater treatment plant. A literature review provided different nitrogen technologies and concept scoring was used to rank and score them. Gas permeable membrane and ammonia stripping ranked the highest and both have the potential to be implemented at Kungsängens current or possible new site. Simulations were used to identify the change in energy consumption and change in effluent water quality related to the implementation of a nitrogen recovery technology. Calculations were performed to reach thequantities of nitrogen that could be recovered, and it was found that the nitrogen recovery potential was 0,2343 ton/d using gas permeable membrane, and 0,2750 ton/d using ammonia stripping. By replacing artificial fertilisers with recovered nitrogen, 7,95 kWh/kg N could be saved using gas permeable membrane and 2,76 kWh/kg N could be saved using ammonia stripping. The degree project also provides insight into European and Swedish lawconformity and predictability. Finally, a discussion of environmental impacts, potential for nitrogen recovery, nitrogen policies, and energy savings was conducted. It was concluded that nitrogen recovery can create benefits due to avoided nitrous oxide emissions, avoided production of precipitation chemicals and decreased energy consumption for aeration. Compared to artificial fertiliser produced using the Haber-Bosch method, it was determined that a significant reduction of carbon dioxide emissions could be reached.

Page generated in 0.0837 seconds