• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidating the Mechanism of Dinitrogen Reduction to Ammonia: Novel Intermediates in the Protonation of Fe(DMeOPrPE)2N2

Balesdent, Chantal 03 October 2013 (has links)
The reduction of dinitrogen (N2) to ammonia (NH3) will continue to play a vital role in society as the population of the world grows and maintains its dependence on artificial fertilizers. This energy-intensive transformation is achieved industrially by the Haber-Bosch process and naturally via nitrogenase enzymes. Recent synthetic systems attempt to produce NH3 artificially but with lower energy costs than Haber-Bosch by modeling their designs after nitrogenase. This dissertation describes the progress made in one iron-phosphine system, the water-soluble Fe(DMeOPrPE)2N2, capable of producing NH3 at room temperature and pressure. Chapter I describes the history of the coordination chemistry of N2 to a variety of metals, with a focus on iron complexes. In addition to exploring the range of coordination geometries and supporting ligands of such complexes, the application of N2 coordination complexes towards NH3 formation is analyzed. Chapter II discusses the various methods for quantifying yields of ammonia. Along with a historical perspective on the popular indophenol method, the challenges and best conditions for measuring NH3 in the Fe-DMeOPrPE system are defined. Chapter III explores a series of trans-hydrido intermediates along a potential protonation pathway of Fe(DMeOPrPE)2N2. The complete series of reduced dinitrogen ligands (N2, N2H2, N2H4, and NH3) on the Fe(DMeOPrPE)2H+ scaffold is described. Chapter IV highlights the discovery and characterization of a unique bridged Fe(I) dimer, observed during the protonation of Fe(DMeOPrPE)2N2 as a dark purple intermediate. Chapter V describes the electrochemistry of certain intermediates in the Fe-DMeOPrPE system. This insight should open new avenues for future investigations. By altering the electronics of the system, more NH3 may eventually be produced. Chapter VI provides a summary of this work. This dissertation includes previously published and unpublished co-authored material. / 10000-01-01
2

Genetic engineering of marine cyanobacterium Synechococcus PCC 7002 for nitrogen fixation

Jennersjö Hedman, Alma January 2024 (has links)
The global demand for nitrogen fertilizer was 12 million metric tonnes in 2014 and is expected to increase to 240 million metric tonnes by the year 2050, with the growth of the global population.  To meet the demand for nitrogen fertilizers, the Haber-Bosch process has primarily been used to produce the precursor of many nitrogen fertilizers - ammonia. The very energy-expensive Haber-Bosch process uses fossil fuels and, therefore, a renewable source of ammonia must be established. Some microorganisms can use atmospheric nitrogen to produce ammonia via the nitrogenase enzyme, a mechanism attractive for alternative ammonia production. In this thesis project, integrating vectors for the marine cyanobacterium Synechococcus PCC 7002 have been designed and generated to facilitate future heterotrophic nitrogenase integration and ammonia production. The vectors were designed for integration in seven neutral sites of the Synechococcus PCC 7002 genome. Five of the seven planned integrating vectors were successfully constructed and transformation was attempted into Synechococcus PCC 7002 to determine the transformation efficiency of the different neutral sites, however, the transformation results were inconclusive.
3

IMPLEMENTATION OF NITROGEN RECOVERY AT WASTEWATER TREATMENT PLANTS TO COMPLEMENT ARTIFICIAL FERTILISER PRODUCTION : An investigation of the nitrogen recovery potential, energy consumption and environmental impacts at Kungsängens wastewater treatment plant in Västerås, Sweden

Kestran, Cassandra, Larsson, Olivia January 2023 (has links)
As Kungsängens wastewater treatment plant is considering a move, it opens up a possibility to implement nitrogen recovery technologies that comply with current and future legislative requirements. Nitrogen recovery offers simultaneous treatment of wastewater and collection of concentrated ammonia products for fertiliser production. This can create a circular and sustainable solution by reduced energy consumption, greenhouse gas emissions and nitrogen pollution. Despite the large amount of research that has been performed on this topic, practical use at wastewater treatment facilities in Sweden are still scarce. The aim of the degree project was to identify nitrogen recovery technologies and investigate their potential impact at a new Kungsängens wastewater treatment plant. A literature review provided different nitrogen technologies and concept scoring was used to rank and score them. Gas permeable membrane and ammonia stripping ranked the highest and both have the potential to be implemented at Kungsängens current or possible new site. Simulations were used to identify the change in energy consumption and change in effluent water quality related to the implementation of a nitrogen recovery technology. Calculations were performed to reach thequantities of nitrogen that could be recovered, and it was found that the nitrogen recovery potential was 0,2343 ton/d using gas permeable membrane, and 0,2750 ton/d using ammonia stripping. By replacing artificial fertilisers with recovered nitrogen, 7,95 kWh/kg N could be saved using gas permeable membrane and 2,76 kWh/kg N could be saved using ammonia stripping. The degree project also provides insight into European and Swedish lawconformity and predictability. Finally, a discussion of environmental impacts, potential for nitrogen recovery, nitrogen policies, and energy savings was conducted. It was concluded that nitrogen recovery can create benefits due to avoided nitrous oxide emissions, avoided production of precipitation chemicals and decreased energy consumption for aeration. Compared to artificial fertiliser produced using the Haber-Bosch method, it was determined that a significant reduction of carbon dioxide emissions could be reached.
4

Alternative energy concepts for Swedish wastewater treatment plants to meet demands of a sustainable society

Brundin, Carl January 2018 (has links)
This report travels through multiple disciplines to seek innovative and sustainable energy solutions for wastewater treatment plants. The first subject is a report about increased global temperatures and an over-exploitation of natural resources that threatens ecosystems worldwide. The situation is urgent where the current trend is a 2°C increase of global temperatures already in 2040. Furthermore, the energy-land nexus becomes increasingly apparent where the world is going from a dependence on easily accessible fossil resources to renewables limited by land allocation. A direction of the required transition is suggested where all actors of the society must contribute to quickly construct a new carbon-neutral resource and energy system. Wastewater treatment is as required today as it is in the future, but it may move towards a more emphasized role where resource management and energy recovery will be increasingly important. This report is a master’s thesis in energy engineering with an ambition to provide some clues, with a focus on energy, to how wastewater treatment plants can be successfully integrated within the future society. A background check is conducted in the cross section between science, society, politics and wastewater treatment. Above this, a layer of technological insights is applied, from where accessible energy pathways can be identified and evaluated. A not so distant step for wastewater treatment plants would be to absorb surplus renewable electricity and store it in chemical storage mediums, since biogas is already commonly produced and many times also refined to vehicle fuel. Such extra steps could be excellent ways of improving the integration of wastewater treatment plants into the society. New and innovative electric grid-connected energy storage technologies are required when large synchronous electric generators are being replaced by ‘smaller’ wind turbines and solar cells which are intermittent (variable) by nature. A transition of the society requires energy storages, balancing of electric grids, waste-resource utilization, energy efficiency measures etcetera… This interdisciplinary approach aims to identify relevant energy technologies for wastewater treatment plants that could represent decisive steps towards sustainability.

Page generated in 0.0325 seconds