• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentological and geochemical investigations on borehole cores of the Lower Ecca Group black shales, for their gas potential : Karoo basin, South Africa

Chere, Naledi January 2015 (has links)
In the recent years, the shale gas discourse has become central to discussions about future energy supply in South Africa. In particular, the Permian black shales of the Lower Ecca Group formations in the Karoo Basin are considered potential source rocks for shale gas. The research presented in this thesis advances the understanding of the shale gas potential of mainly the Prince Albert, Whitehill and Tierberg/Collingham Formations. These shale sequences were sampled from eight deep boreholes spread across the main Karoo Basin and geochemically analysed at the GFZ - Helmholtz Centre Potsdam, Germany. Three key questions guided the study, these are: (i) what is the lithology of the sequence; (ii) where in the basin do the shale sequences attain maximum thickness at optimum depth i.e. beneath 1000-1500m; and (iii) and their shale characteristics. To evaluate these, borehole core logging, petrology and organic geochemistry were used extensively. Petrology involved the use of thin section, scanned electron and transmission electron microscopy for mineralogy as well as the identification of sedimentary features, organic matter and nano-scale porosity. These were coupled with standard organic geochemistry techniques such as Rock Eval. analysis, open pyrolysis gas chromatography and thermovaporisation to quantify the free gas, total organic carbon (TOC), present-day gas generative potential and kerogen type. The results show that the Whitehill Formation, away from the CFB and not intruded by dolerite, has the most potential for shale gas. Microscopic studies of this pyritic black shale reveal the occurrence of porous amorphous matter, indicating thermal maturity within the gas generation zone (i.e. > 1.1 percent Ro, 120ºC). The TOC content is consistently high within the Whitehill (exceeding industry requirement of 2 percent), attaining maximum of 7.3 percent. The highest yields of free and desorbed gas, especially methane, were emitted within this formation (S1 and nC1 peaks); mostly within its dolomitic units. In addition, dissolution porosity within dolomite units of the Whitehill Formation was identified as the predominant type of porosity. Thus, it is deduced that the dolomitic units of Whitehill Formation potentially contain the greatest volumes of free gas. HI values attain maximum of 25 mg HC/g TOC, whereas the OI values 26 mg CO2/g TOC. Such low HI and OI values are typically attributed to the dominance of Type IV kerogen, and consistent with overmaturity. Open pyrolysis (GC) show the main the chemical compound of the organic matter to be m-p-xylene, consistent with a mix of Type III, Type I/II and Type IV kerogen. Lithologically, the Whitehill Formation is composed of ~ 35 quartz, 13 percent feldspar, 26 percent illite and ~ 23 percent dolomite with variable amounts of pyrite. The dominance of quartz is directly proportional to the brittleness of the rock. Thus it can be deduced that the Whitehill Formation is relatively brittle and therefore fraccable. Burial trends indicate increasing depth (from ground level) to the top of the Whitehill Formation towards the south and south-eastern portion of the basin. It is in the southern region where thicknesses of this black shale exceeding 50m occur at depths more than 1500m; 1000m beneath fresh water aquifers. It therefore concluded that Whitehill Formation in the southern portion of Karoo Basin, but away from the thermo-tectonic overprint of the Cape Orogeny, is the most probable shale gas reservoir in South Africa.

Page generated in 0.0608 seconds