• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 36
  • 15
  • 14
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 32
  • 31
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

IMPLEMENTATION OF NOVEL RECEPTOR-TRANSDUCTION CONCEPTS AND MATERIAL MORPHOLOGIES IN GAS SENSORICS

Strelcov, Evgheni 01 August 2011 (has links)
Low dimensional nanostructures have defined the frontier of the research in material science for the last two decades. Presented here are the results of experimental research on growth, device fabrication and application of quasi-one dimensional phthalocyanines and metal oxides to gas-sensing. The possibility of rational tuning of the growth conditions, in order to control composition, morphology, size, orientation and alignment of the grown low-dimensional nanostructures was investigated. Employing custom designed heating stages coupled with optical microscope the in situ approach of monitoring the growth of nanostructures has been realized. Using this method, the growth of VO2 nanowires and nanoplatelets have been investigated and two novel growth mechanisms were discovered and explained. A variety of phthalocyanine and metal-oxide nanowire-based chemical sensors have been proposed, fabricated and tested. The focus of our research was on the development of new sensing principles and the improvement of existing ones. In particular, nanowires of tin and titanium dioxide were proposed to be used as self-heated chemiresistors capable of operating in the absence of an external heater, thus paving the way for ultra-low power consumption sensors. For the first time VO2 nanowires were used to create a nano-Pirani gauge and a gas sensor employing a sharp temperature-driven metal-insulator transition in this material. The sensor is sensitive to both chemically active and inert gases. Its performance is modeled and optimization parameters are presented.
32

Comparação da resposta como sensor de gás de dispositivos com nanofita única e com múltiplas nanofitas de óxido de estanho /

Masteghin, Mateus Gallucci. January 2018 (has links)
Orientador: Marcelo Ornaghi Orlandi / Banca: Regina Celia Galvão Frem / Banca: Neftali Lenin Villarreal Carreño / Resumo: Nesse trabalho, realizou-se um estudo a fim de compreender os mecanismos de transporte e as interações gás-sólido que ocorrem na superfície de nanoestruturas de SnO, Sn3O4 e SnO2, preparadas em diferentes dispositivos. Com o objetivo de se obter uma melhor compreensão dos fenômenos envolvidos, optou-se por estudar, individualmente e coletivamente (única e mútiplas), as nanofitas de cada uma das três composições, sendo que o primeiro método permite descartar interferências extrínsecas, analisando-se apenas os mecanismos intrínsecos de condução nas nanoestruturas, sem a presença de barreiras de potencias geradas pelo contato semicondutor/semicondutor e, na maioria dos casos, sem o possível contato não-ôhmico metal/semicondutor. Para isso, os materiais foram sintetizados pelo método de redução carbotérmica e, posteriormente, foram caracterizados por DRX, Raman, UV-Vis e MEV-FEG para confirmar a eficácia da síntese, parte fundamental para a obtenção de resultados confiáveis. Os materiais também foram caracterizados em relação à sua resposta como sensor de gás na presença de gases oxidantes e redutores (por exemplo, NO2 e CO) em baixas concentrações (na escala de ppm) e em temperaturas de trabalho entre 100 °C e 350°C, sendo que para atingir tais temperaturas utilizou-se o método convencional de aquecimento e o método de self-heating, sendo o último promissor por não necessitar de fonte externa para realizar o aquecimento, gerando economia de energia e possibilitando maior mobilid... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In the following work, it was carried out a study in order to understand the transport mechanisms and the gas-solid interactions that occur on the surface of SnO, Sn3O4, and SnO2 nanostructures, made-up over different devices. As the main goal of a better understanding regarding involved interaction phenomena, it was chosen to study the nanostructures individually (single-element devices) and as multiple structures (carpet mode devices), in which the former allows to discard extrinsic interferences, such as potential Schottky-type barriers as a result of the semiconductor/semiconductor contact, and in the most of the cases when dealing with single-element devices, without the possible metal/semiconductor non-ohmic contact. Thus, the materials were synthesized by the carbothermal reduction method and characterized by XRD, Raman Spectroscopy, UV-Vis light measurements, and SEM-FEG. The materials were investigated as gas sensors, using oxidizing and reducing gases (such as NO2 and CO) in low concentration levels (ppm), and with working temperatures ranging from 100 °C to 300 °C. These working temperatures were reached using the conventional heating and the self-heating methods, the latter being advantageous for not requiring an external source to the heating, resulting in low dissipated power and allowing higher mobility when seeking for in-situ leakage detections. The highlighted contributions from this work are the Sn3O4 nanobelts and SnO micro-disks characterization as single... (Complete abstract click electronic access below) / Mestre
33

Microrreatores e sensores de gases baseados em nanotubos de carbono / Micro-reatores e sensores de gases baseados em nanotubos de carbono

Silveira, José Valdenir da January 2014 (has links)
SILVEIRA, José Valdenir da. Microrreatores e sensores de gases baseados em nanotubos de carbono. 2014. 138 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-09-12T20:16:40Z No. of bitstreams: 1 2014_tese_jvsilveira.pdf: 17216086 bytes, checksum: b751845b2b9448eb6e67f9368f248e62 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-09-12T20:22:36Z (GMT) No. of bitstreams: 1 2014_tese_jvsilveira.pdf: 17216086 bytes, checksum: b751845b2b9448eb6e67f9368f248e62 (MD5) / Made available in DSpace on 2014-09-12T20:22:36Z (GMT). No. of bitstreams: 1 2014_tese_jvsilveira.pdf: 17216086 bytes, checksum: b751845b2b9448eb6e67f9368f248e62 (MD5) Previous issue date: 2014 / This work exploits the fabrication, setup and tests of the micro-reactors and gas sensors based on carbon nanotubes. The configuration of the gas sensors was designed to allow the use of multi-walled carbon nanotubes - as commercially acquired, oxidized or decorated with nanoparticles – as sensor elements which have similar behavior to a sensor element formed of a single-walled carbon nanotube with large diameter (~ 20 nm). In this configuration, the nanotubes were deposited using dielectrophoresis technique with their ends supported on the edges of the electrodes and the central part suspended (bridged) over a gap ~ 1 m wide and ~5 m deep, in order to connect the ends of pre-produced standard metal electrodes. A new approach to improve the electrical and thermal contact between multi-walled carbon nanotubes deposited by dielectrophoresis and metal electrodes was developed by using heating spatially localized, through the use of laser radiation in the microRaman setup. Subsequent to deposition, the nanotubes were directly heated in the ambient atmosphere by a focused laser beam. The Raman signal of the nanotubes was used to determine the temperature reached in the process and this method has been used to improve the electrical contact with different electrodes (W, Ti and Au). The reduction in electrical resistance was up to three orders of magnitude, resulting in contact resistivity as low as ~ 0,1-1 kΩ.μm2, with the lowest values obtained for Au. A new method of simultaneous deposition of nanotubes and decoration with gold nanoparticles grown by electrochemical method is also presented. The method enables the production of hybrid structures with high potential for application in opto-electronic devices such as gas sensors, biosensors or photodetectors. The structural and morphological characterization of each sensor element used in this work was mainly made by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and electrical measurements. Sensing elements with different combinations of nanostructured materials (MWCNTs as commercially acquired, oxidized, or decorated with metal nanoparticles) were tested in inert (Ar or N2) and oxidant (O2) atmosphere. Crucial parameters for the proper functioning of gas sensors (specific response time/recovery, sensitivity, stability, reproducibility, etc.) were investigated based on the obtained experimental data. / O presente trabalho explora a fabricação, montagem e testes de micro-reatores e de sensores de gás baseados em nanotubos de carbono. A configuração dos sensores de gases foi planejada de modo a permitir o uso de nanotubos de carbono de muitas paredes – como adquiridos comercialmente, oxidados ou decorados com nanopartículas - como elementos sensores de comportamento semelhante a um elemento sensor formado por nanotubos de carbono de uma única parede e com grandes diâmetros (~20 nm). Nesta configuração, os nanotubos foram depositados utilizando a técnica dieletroforese com as pontas apoiadas sobre as bordas dos eletrodos e com a parte central suspensa (em ponte) sobre um gap de ~1 m de largura por ~5 m de profundidade, de modo a ligar as extremidades de eletrodos metálicos padronizados pré-produzidos. Uma nova abordagem para melhorar o contato elétrico e térmico entre nanotubos de carbono de múltiplas paredes depositados por dieletroforese e eletrodos de metal foi desenvolvida, usando aquecimento espacialmente localizado, através do uso de laser. Subsequentemente à deposição, os nanotubos foram diretamente aquecidos, em atmosfera ambiente, por um feixe de laser focado. O sinal Raman dos nanotubos foi usado para determinar a temperatura atingida no processo e este método foi utilizado para melhorar o contato elétrico com diferentes eletrodos (W, Ti e Au). A redução na resistência elétrica foi de até três ordens de magnitude, resultando em resistividade de contato tão baixa quanto ~ 0,1-1 kΩ.μm2, com os menores valores obtidos para Au. Um novo método de deposição de nanotubos com simultânea decoração por nanopartículas de ouro crescidas pelo método eletroquímico também é apresentado. O método possibilita obtenção de estruturas híbridas com alto potencial de aplicação em dispositivos opto-eletrônicos, tais como sensores de gases, biossensores ou fotodetectores. A caracterização estrutural e morfológica de cada elemento sensor usado neste trabalho foi feita principalmente por microscopia eletrônica de varredura, microscopia eletrônica de transmissão, espectroscopia de energia dispersiva, espectroscopia Raman e medidas elétricas. Foram usados elementos sensores com diferentes combinações de materiais nanoestruturados (MWCNTs como adquiridos comencialmente, oxidados, ou decorados com nanopartículas metálicas), testados em atmosferas inertes (N2 ou Ar) e oxidante (O2). Parâmetros determinantes para um bom funcionamento dos sensores de gás (tempos específicos de resposta/recuperação, sensibilidade, estabilidade, reprodutibilidade, etc) foram investigados com base nos dados experimentais obtidos.
34

Synthesis, Characterization and Chemical Functionalization of Nitrogen Doped Carbon Nanotubes for the Application in Gas- and Bio-Sensors

Fu, Yangxi 10 January 2018 (has links) (PDF)
In this work, a chemiresistor-type sensing platform based on aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) was developed. Our N-MWCNT based sensors can be made on both rigid and flexible substrates; they are small, have low power consumption and are suitable for highly efficient and reliable detection of different biomolecules and gases, at room temperature. The performance of these sensors was demonstrated for avian influenza virus (AIV) subtype H5N1 DNA sequences and toxic gases NO and NH3 at low concentrations. In our study, chemical vapor deposition (CVD) method was applied to synthesize vertically aligned nitrogen doped carbon nanotube arrays on a large area (> 1 cm2) on Si/SiO2 substrate using Fe/Al2O3 layer as a catalyst and a mixture of ethanol and acetonitrile as a C/N source. Especially, the diameter, length, nitrogen-doping concentration and morphology of the nanotubes were controllably tailored by adjusting the thickness of catalyst film, reaction duration and temperature as well as the amount of nitrogen-containing precursor. For integrating N-MWCNTs into chemiresistor devices, we developed a direct contact printing method for a dry, controllable and uniform transferring and positioning of the CVD-grown vertical nanotubes onto well-defined areas of various rigid and flexible substrates. After horizontally aligned N-MWCNT arrays were formed on a target substrate, interdigitated metallic microelectrodes with an interspacing of 3 µm were deposited perpendicular to the nanotube alignment direction to fabricate chemiresistor devices for biomolecule and gas sensing. This way, well-aligned nanotubes were laid across the Au/Cr interdigitated electrode fingers, had a strong adhesion with the electrodes and served as conducting channels bridging the electrodes. The N-MWCNT based chemiresistor device was applied as a label-free DNA sensor for a highly sensitive and fast detection of AIV subtype H5N1 DNA sequences. For this, the nanotubes were functionalized with probe DNA, which was non-covalently attached to sidewalls of the N-MWCNTs via π-π interaction. Such functionalized sensors were applied to quantitatively detect complementary DNA target with concentration ranging from 20 pM to 2 nM after 15 min incubation at room temperature. The sensors showed no response to non-complementary DNA target for concentrations up to 2 µM showing an excellent selectivity. Investigations on the efficient gas sensing of N-MWCNT-based chemiresistor of reducing/ oxidizing gases NH3 and NO were also reported in this work. The aim was to assess the possibility for N-MWCNTs to be applied as innovative sensing materials for room temperature gas sensing. N-MWCNTs with varying doping levels (N/C ratio of 5.6 to 9.3at%) were used as sensing materials and exposed to NH3 (1.5-1000 ppm) and NO (50-1000 ppm) for exploring and comparing their sensing performance. This study offered an effective route for further modification of CNTs according to various sensing application. Finally, our investigations showed a high potential of the developed N-MWCNT-based sensing platform for various applications ranging from environmental monitoring to point-of-care medical diagnostics.
35

Improving the Sensing Performance of Semiconductor Metal Oxide Gas Sensors through Composition and Nanostructure Design

January 2020 (has links)
abstract: There are increasing demands for gas sensors in air quality and human health monitoring applications. The qualifying sensor technology must be highly sensitive towards ppb level gases of interest, such as acetylene (C2H2), hydrogen sulfide (H2S), and volatile organic compounds. Among the commercially available sensor technologies, conductometric gas sensors with nanoparticles of oxide semiconductors as sensing materials hold significant advantages in cost, size, and cross-compatibility. However, semiconductor gas sensors must overcome some major challenges in thermal stability, sensitivity, humidity interference, and selectivity before potential widespread adoption in air quality and human health monitoring applications. The focus of this dissertation is to tackle these issues by optimizing the composition and the morphology of the nanoparticles, and by innovating the structure of the sensing film assembled with the nanoparticles. From the nanoparticles perspective, the thermal stability of tin oxide nanoparticles with different Al dopant concentrations was studied, and the results indicate that within certain range of doping concentration, the dopants segregated at the grain surface can improve the thermal stability by stabilizing the grain boundaries. From the sensing film perspective, a novel self-assembly approach was developed for copper oxide nanosheets and the sensor response towards H2S gas was revealed to decrease monotonically by more than 60% as the number of layers increase from 1 to 300 (thickness: 0.03-10 μm). Moreover, a sensing mechanism study on the humidity influence on H2S detection was performed to gain more understandings of the role of the hydroxyl group in the surface reaction, and humidity independent response was observed in the monolayer film at 325 ℃. With a more precise deposition tool (Langmuir-Blodgett trough), monolayer film of zinc oxide nanowires sensitized with gold catalyst was prepared, and highly sensitive and specific response to C2H2 in the ppb range was observed. Furthermore, the effect of surface topography of the monolayer film on stabilizing noble metal catalyst, and the sensitization mechanism of gold were investigated. Lastly, a semiconductor sensor array was developed to analyze the composition of gases dissolved in transformer oil to demonstrate the industrial application of this sensor technology. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
36

Gas sensing properties of Ceo2 nanostructures

Khunou, Ramotseng January 2020 (has links)
>Magister Scientiae - MSc / The industrial safety requirements and environmental pollution have created a high demand to develop gas sensors to monitor combustible and toxic gases. As per specifications of World Health Organization (WHO) and Occupational Safety and Health Administration (OSHA), lengthy exposure to these gases lead to death which can be avoided with early detection. Semiconductor metal oxide (SMO) has been utilized as sensor for several decades. In recent years, there have been extensive investigations of nanoscale semiconductor gas sensor.
37

Understanding The Low Temperature Electrical Propertiesof Nanocrystalline Sno2 For Gas Sensor Applications

Drake, Christina 01 January 2007 (has links)
Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature gas sensor behavior of nanocrystalline oxide is presented that can be generalized to other nano-oxide systems and be useful in specific engineering of other nanomaterials. Deeper understanding of how nano-oxides react chemically and electronically would be extremely beneficial to issues present in current low cost, low temperature sensor technology. Ability to exactly monitor and then engineer the chemistry of nanostructures in the space charge region as well as the surface is also of great significance. Knowledge of the mechanisms responsible for enhanced sensor response in this material system could viably be applied to other material systems for sensor applications.
38

Synthesis and Gas Sensing Properties of MOD Ni-Zr02 Cermet Films on Silicon Substrate

Moghe, Ameya S. January 2005 (has links)
No description available.
39

Fabrication and Characterization of AlGaN/GaN Heterostructure Devices for Hydrogen Gas Sensing at High Temperature

Song, Junghui 25 September 2009 (has links)
No description available.
40

Development Of A Tin Oxide Based Thermoelectric Gas Sensor For Volatile Organic Compounds

Anuradha, S 01 1900 (has links)
Today there is a great deal of interest in the development of gas sensors for applications like air pollution monitoring, indoor environment control, detection of harmful gases in mines etc. Based on different sensing principles, a large variety of sensors such as semiconductor gas sensors, thermoelectric gas sensors, optical sensors and thermal conductivity sensors have been developed. The present thesis reports a detailed account of a novel method followed for the design and development of a thermoelectric gas sensor for sensing of Volatile Organic Compounds. Thermoelectric effect is one of the highly reliable and important working principles that is widely being put into practical applications. The thermoelectric property of semiconducting tin oxide film has been utilized in the sensor that has been developed. The thermoelectric property of semiconducting tin oxide film has been utilized in the sensor. The deposition parameters for sputtering of tin oxide film have been optimized to obtain a high seebeck coefficient. A test set-up to characterize the deposited films for their thermoelectric property has been designed and developed. A novel method of increasing the seebeck coefficient of tin oxide films has been successfully implemented. Thin films of chromium, copper and silver were used for this purpose. Deposition of the semiconducting oxide on strips of metal films has led to a noticeable increase in the seebeck coefficient of the oxide film without significantly affecting its thermal conductivity. The next part of our work involved development of a gas sensor using this thermoelectric film. These sensors were further tested for their response to volatile organic compounds. The sensor showed significant sensitivity to the test gases at relatively low temperatures. In addition to this, the developed sensor is also selective to acetone gas.

Page generated in 0.0917 seconds