• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the high turbulence plunging jet reactor

Sofolarin, Adeniyi Babatunde January 1990 (has links)
No description available.
2

The effect of Prewetting on the Pressure Drop, Liquid Holdup and Gas-Liquid Mass Transfer in Trickle-Bed Reactors

Loudon, Dylan 02 May 2006 (has links)
The prewetting of a trickle-bed reactor has important implications in the design and operation of these reactors. This is because the prewetting changes the flow morphology (shape and texture) of the liquid flowing through the bed and leads to the existence of multiple hydrodynamic states. The extent of this change in flow morphology can be seen in the effect the prewetting of the reactor has on the pressure drop, liquid holdup and gas-liquid mass transfer. The following prewetting procedures were used: -- Levec-wetted: the bed is flooded and drained and after residual holdup stabilisation the gas and liquid flow is reintroduced -- Kan-wetted: the bed is operated in the pulse flow regime and liquid and gas flow rates are reduced to the desired set point -- Super-wetted: the bed is flooded and gas and liquid flow are introduced once draining commences For the pressure drop: -- The different prewetting procedures resulted in two distinct regions (Upper region Kan and Super-wetted, Lower region Dry and Levec-wetted) -- There was no significant difference between the Dry and Levec-wetted beds -- The pressure drop in the Kan and Super-wetted beds can be as much as seven times greater than the pressure drop in the Dry and Levec-wetted beds For the liquid holdup: -- The different prewetting procedures resulted in four distinct regions (Kan-wetted, Super-wetted, Levec-wetted, Dry bed) -- The liquid holdup in the Kan-wetted bed can be as much as four times greater than the liquid holdup in the Dry bed -- The liquid holdup in the Levec-wetted can be as much as thirty percent lower than the liquid holdup in the Kan-wetted bed For the gas-liquid mass transfer: -- The different prewetting procedures resulted in three distinct regions (Kan and Super-wetted, Levec-wetted, Dry bed) -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as six times greater than the mass transfer coefficient in the Dry bed -- The volumetric gas-liquid mass transfer coefficient in the Kan and Super-wetted beds can be as much as two and a half times greater than the mass transfer coefficient in the Levec-wetted bed While an increase in the liquid flow rate results in an increase in the pressure drop, liquid holdup and gas-liquid mass transfer for all of the experiments, the effect of increasing gas flow on the measured variables were more pronounced for the prewetted beds. In a prewetted bed (Kan, Super and Levec-wetted) an increase in the gas flow rate causes an increase in the volumetric gas-liquid mass transfer coefficient and a decrease in the liquid holdup. The decrease in the liquid holdup is due to the fact that the increased gas flow rate causes the films around the particles to thin and spread out. In the dry bed the flow is predominantly in the form of rivulets and the increase in gas flow rate does not affect the liquid holdup. In the case of the volumetric gas-liquid mass transfer coefficient the increased gas flow rate causes an increase in the mass transfer coefficient regardless of the prewetting procedure. This increase is due to the effect that the gas flow rate has on the liquid holdup as well as the increase in the gas-liquid interfacial area due to the increased gas-liquid interaction. If the pulsing in the Kan-wetted bed is induced by increasing the gas flow rate and keeping the liquid flow rate constant the results are significantly different. The pressure drop in the gas-pulsing experiments was lower than the pressure drop in the recorded in the Kan and Super-wetted beds, but higher than the pressure drop in the dry and Levec-wetted beds. However, the liquid holdup in the gas-pulsing experiments was higher than the liquid holdup in any of the other beds. The volumetric gas-liquid mass transfer coefficient in the gas-pulsing experiments was lower than the mass transfer coefficients of the Kan and Super-wetted beds, but higher than the mass transfer coefficients in the dry and Levec-wetted beds. The multiple operating points obtained from the different prewetting procedures are by no means the only possible operating points. By simply decreasing the draining time in the Levec-wetted bed steady state operating points can be found between those of the Super and Levec-wetted beds. This alludes to the fact that the operating conditions determined from the different prewetting modes are only boundaries and that the actual operating point can lie anywhere between these boundaries. The existence of these multiple hydrodynamic states complicates things further when a correlation is developed to determine the pressure drop, liquid holdup or the volumetric gas-liquid mass transfer coefficient. No correlation tested was able to accurately predict the pressure drop, liquid holdup or volumetric gas-liquid mass transfer coefficient in the dry or prewetted beds. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
3

Development of a Biomass-to-Methanol Process Integrating Solid State Anaerobic Digestion and Biological Conversion of Biogas to Methanol

Sheets, Johnathon P. 12 October 2017 (has links)
No description available.
4

Carbon Capture Using The Microalgae Chlorella Vulgaris in a Packed Bubble Column Photobioreactor

Zame, Kenneth Kofiga 05 November 2010 (has links)
No description available.
5

Hidrodinamika i prenos mase u airlift reaktoru sa membranom / Hydrodynamics and mass transfer of an airlift reactor with inserted membrane

Kojić Predrag 20 May 2016 (has links)
<p>U okviru doktorske disertacije izvedena su eksperimentalna istraživanja osnovnih hidrodinamičkih i maseno-prenosnih karakteristika airlift reaktora sa spoljnom recirkulacijom sa ugrađenom vi&scaron;ekanalnom cevnom membranom u silaznu cev (ALSRM). ALSRM je radio na dva načina rada: bez mehurova u silaznoj cevi (način rada A) i sa mehurovima u silaznoj cevi (način rada B) u zavisnosti od nivoa tečnosti u gasnom separatoru. Ispitivani su uticaji prividne brzine gasa, povr&scaron;inskih osobina tečne faze, tipa distributora gasa i prisustva mehurova gasa u silaznoj cevi na sadržaj gasa, brzinu tečnosti u silaznoj cevi i zapreminski koeficijent prenosa mase u tečnoj fazi u ALSRM. Rezultati su poređeni sa vrednostima dobijenim u istom reaktoru ali bez membrane (ALSR). Sadržaj gasa u uzlaznoj i silaznoj cevi određivan je pomoću piezometarskih cevi merenjem hidrostatičkog pritiska na dnu i vrhu uzlazne i silazne cevi. Brzina tečnosti merena je pomoću konduktometrijskih elektroda dok je zapreminski koeficijent prenosa mase dobijen primenom dinamičke metode merenjem promene koncentracije kiseonika u vremenu optičkom elektrodom. Eksperimentalni rezultati pokazuju da sadržaj gasa, brzina tečnosti i zapreminski koeficijent prenosa mase zavise od prividne brzine gasa, vrste alkohola i tipa distributora gasa kod oba reaktora. Vi&scaron;ekanalna cevna membrana u silaznoj cevi uzrokovala je povećanje ukupnog koeficijenta trenja za 90% i time dovela do smanjenja brzine tečnosti u silaznoj cevi do 50%. Smanjena brzina tečnosti u silaznoj cevi povećala je sadržaj gasa do 16%. Predložene neuronske mreže i empirijske korelacije odlično predviđaju vrednosti za sadržaj gasa, brzinu tečnosti i zapreminski koeficijent prenosa mase.</p> / <p>An objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift membrane reactor (ELAMR). The ELAMR was operated in two modes: without (mode A), and with bubbles in the downcomer (mode B), depending on the liquid level in the gas separator. The influence of superficial gas velocity, gas distributor&rsquo;s geometry and various diluted alcohol solutions on hydrodynamics and gas-liquid mass transfer coefficient of the ELAMR was studied. Results are commented with respect to the external loop airlift reactor of the same geometry but without membrane in the downcomer (ELAR). The gas holdup values in the riser and the downcomer were obtained by measuring the pressures at the bottom and the top of the riser and downcomer using piezometric tubes. The liquid velocity in the downcomer was determined by the tracer response method by two conductivity probes in the downcomer. The volumetric mass transfer coefficient was obtained by using the dynamic oxygenation method by dissolved oxygen probe. According to experimental results gas holdup, liquid velocity and gas-liquid mass transfer coefficient depend on superficial gas velocity, type of alcohol solution and gas distributor for both reactors. Due to the presence of the multichannel membrane in the downcomer, the overall hydrodynamic resistance increased up to 90%, the liquid velocity in the downcomer decreased up to 50%, while the gas holdup in the riser of the ELAMR increased maximally by 16%. The values of the gas holdup, the liquid velocity and the gas-liquid mass transfer coefficient predicted by the application of empirical power law correlations and feed forward back propagation neural network (ANN) are in very good agreement with experimental values.</p>
6

Flottation réactive à l'ozone de contaminants modèles issus de papiers récupérés : étude hydrodynamique et réactivité / Ozone reactive flotation of model contaminants contained in recovered papers : hydrodynamics and reactivity study

Herisson, Alexandre 25 June 2018 (has links)
La diminution de la qualité des collectes des papiers récupérés ainsi que l’accumulation de substances dissoutes dans les eaux de procédés affecte l’efficacité des lignes de désencrage industrielles et contamine davantage les effluents liquides. Dans ce contexte, le LGP2 a développé depuis quelques années un procédé innovant de désencrage, la flottation réactive à l’ozone, afin de dégrader chimiquement les polluants dissouts en parallèle de l’élimination de l’encre. Afin de mieux comprendre les mécanismes mis en jeu, des essais de flottation à l’air et à un mélange ozone/oxygène, sur trois contaminants modèles, sélectionnés après une étude bibliographique préalable, ont été réalisés dans un milieu diphasique gaz/liquide, en l’absence de fibres cellulosiques. Les expérimentations ont été conduites sur deux pilotes de laboratoire instrumentés : une colonne à bulles fonctionnant avec de l’air uniquement, pour l’étude du comportement hydrodynamique (taille et distribution de bulles, rétention gazeuse) en présence des contaminants dissouts, et une deuxième colonne à bulles, similaire mais conçue avec des matériaux résistants aux gaz corrosifs, dédiée à l’étude des réactions d’oxydation en présence d’ozone. L’examen du comportement hydrodynamique montre que les conditions de débit de gaz et d’injection retenues conduisent à des tailles de bulles optimales pour une flottation efficace, que ce soit en présence ou absence de contaminants. Ces conditions obtenues avec de l’air ont été transposées en première approximation au système ozone/oxygène. L’étude du transfert de l’ozone et de sa réactivité avec les trois contaminants modèles, à différentes températures et concentrations en ozone, a conduit à la détermination des constantes cinétiques de réaction et a montré que les contaminants étaient, selon leur nature, oxydés ou dépolymérisés. Bien que la DCO des solutions traitées diminue très peu après la flottation réactive à l’ozone, la qualité des effluents est améliorée sur le plan de leur biodégradabilité. / The decrease of the recovered paper collection quality and the accumulation of dissolved substances in process water affect the deinking line efficiency and contaminate more and more the liquid effluents. In this context the LGP2 has developed an innovative deinking process, the ozone reactive flotation, to chemically degrade dissolved pollutants in parallel with ink removal. To better understand the mechanisms involved, air and ozone/oxygen flotation trials have been conducted on three model contaminants selected in a preliminary bibliographic review, in a two-phase gas/liquid system, in the absence of fibers. Experiments have been carried out on two instrumented laboratory pilots: a bubble column operating only with air for the study of the hydrodynamics of the reactor (bubbles size and distribution, gas hold-up) in the presence of dissolved contaminants, and a second one, similar in its conception but built using materials resistant to corrosive gas, dedicated to the study of the oxidation reactions with ozone. The evaluation of the hydrodynamics related to gas flow and injection system selected, studied with air but supposed to be the same with ozone/oxygen gas mixture, shows that the bubble size, with or without contaminants, is optimal for an efficient flotation process. The study of ozone mass transfer and reactivity with the three model contaminants, for several temperatures and ozone concentrations, leads to the calculation of kinetic constants and shows that the contaminants, depending on their nature, have been oxidized or depolymerized. Although the COD of the treated solutions does not decrease a lot after the ozone reactive flotation, the effluent quality has been improved in terms of biodegradability since contaminants are partially degraded.
7

Local investigations of gas-liquid mass transfer around Taylor bubbles flowing in straight and meandering millimetric channels using a colorimetric method / Etudes locales par colorimétrie du transfert de matière gaz-liquide autour de bulles de Taylor en écoulement dans des canaux millimétriques droits et ondulés

Yang, Lixia 24 March 2017 (has links)
Les réacteurs-échangeurs à plaques (HEX) sont une technologie clé en intensification des procédés. Cependant, la plupart des recherches existantes portant sur ce type d'équipement ont été réalisées dans le cas d’écoulements monophasiques. Pour les réactions gaz-liquide, peu d'études ont été conduites. Cette thèse a pour objectif d’étudier localement le transfert de matière gaz-liquide autour de bulles de Taylor en écoulement dans des canaux millimétriques droits et ondulés par une méthode dite colorimétrique. Ceci constitue une étape préliminaire indispensable avant la mise en œuvre de systèmes réactifs diphasiques. Il a d’abord déterminé si une possible accélération du transfert de matière gaz-liquide pouvait avoir lieu en présence de la réaction chimique utilisée. La deuxième phase de ce travail s’est focalisée sur l'étape de formation des bulles de Taylor dans un microréacteur. Ensuite, l'hydrodynamique gaz-liquide a été caractérisée et les effets des coudes sur le mécanisme de transfert de masse ont été étudiés localement dans un canal carré millimétrique ondulé. Enfin, une comparaison rigoureuse a pu être effectuée entre les différentes géométries de canaux (ondulé et droit). Elle a permis de montrer comment et pourquoi une géométrie ondulé permet d’intensifier le transfert de masse gaz-liquide (notamment en terme d’efficacité de transfert). L’ensemble de ces résultats ont conduit à la formulation une loi d'échelle, exprimée en termes de nombres de Sherwood, de Graetz et de Péclet, capable de décrire l'évolution du transfert de matière gaz-liquide en fonction de la position axiale dans le canal et des conditions opératoires mises en œuvre. / Compact Heat-EXchanger reactors (HEX) are an important part of process intensification technology. However, most of the existed research dealing with such type of equipment has been focused on the application of one-phase reactive flows. For gas-liquid reactions, few investigations have been out carried. This thesis aims at locally studying gas-liquid mass transfer around Taylor bubbles flowing in straight and meandering millimetric channels using a colorimetric method; this is a preliminary step essential before implementing two-phase reactive systems. Firstly, the occurrence of a possible enhancement of the gas-liquid mass transfer by the chemical reaction involved was investigated. Secondly, the gas-liquid mass transfer occurring in Taylor flows right after the bubble formation stage in a microreactor was studied. Thirdly, the gas-liquid hydrodynamics were characterized and the effects of bends on the mass transfer mechanism were locally investigated in a millimetric meandering channel. At last, a rigorous comparison could be made between the meandering and straight channels. It showed how and why the meandering geometry leads to intensify gas-liquid mass transfer. All these findings enabled to formulate a scaling law, expressed in terms of Sherwood, Graetz and Péclet numbers, able to describe the evolution of gas-liquid mass transfer as a function of axial position and operating conditions.
8

Design and characterization of gas-liquid microreactors / Design et caractérsation des micro-réacteurs gaz-liquide

Völkel, Norbert 04 December 2009 (has links)
Cette étude est dédiée à l'amélioration du design des microréacteurs gaz-liquide. Le terme de microréacteur correspond à des appareils composés de canaux dont les dimensions sont de l’ordre de quelques dizaines à quelques centaines de microns. Grâce à la valeur importante du ratio surface/volume, ces appareils constituent une issue prometteuse pour contrôler les réactions rapides fortement exothermiques, souvent rencontrées en chimie fine et pharmaceutique. Dans le cas des systèmes gaz-liquide, on peut citer par exemple les réactions de fluoration, d’hydrogénation ou d’oxydation. Comparés à des appareils conventionnels, les microréacteurs permettent de supprimer le risque d’apparition de points chauds, et d’envisager le fonctionnement dans des conditions plus critiques, par exemple avec des concentrations de réactifs plus élevées. En même temps, la sélectivité peut être augmentée et les coûts opératoires diminués. Ainsi, les technologies de microréacteurs s’inscrivent bien dans les nouveaux challenges auxquels l'industrie chimique est confrontée ; on peut citer en particulier la réduction de la consommation énergétique et la gestion des stocks de produits intermédiaires. Les principaux phénomènes qui doivent être étudiés lors de la conception d’un microréacteur sont le transfert de matière et le transfert thermique. Dans les systèmes diphasiques, ces transferts sont fortement influencés par la nature des écoulements, et l'hydrodynamique joue donc un rôle central. Par conséquent, nous avons focalisé notre travail sur l’hydrodynamique de l’écoulement diphasique dans les microcanaux et sur les couplages constatés avec le transfert de masse. Dans ce contexte, nous nous sommes dans un premier temps intéressés aux régimes d’écoulement et aux paramètres contrôlant la transition entre les différents régimes. Au vu des capacités de transfert de matière et à la flexibilité offerte en terme de conditions opératoires, le régime de Taylor semble le plus prometteur pour mettre en œuvre des réactions rapides fortement exothermiques et limitées par le transfert de matière. Ce régime d'écoulement est caractérisé par des bulles allongées entourées par un film liquide et séparées les unes des autres par une poche liquide. En plus du fait que ce régime est accessible à partir d’une large gamme de débits gazeux et liquide, l'aire interfaciale développée est assez élevée, et les mouvements de recirculation du liquide induits au sein de chaque poche sont supposés améliorer le transport des molécules entre la zone interfaciale et le liquide. A partir d'une étude de l’hydrodynamique locale d’un écoulement de Taylor, il s’est avéré que la perte de charge et le transfert de matière sont contrôlés par la vitesse des bulles, et la longueur des bulles et des poches. Dans l’étape suivante, nous avons étudié l'influence des paramètres de fonctionnement sur ces caractéristiques de l’écoulement. Une première phase de notre travail expérimental a porté sur la formation des bulles et des poches et la mesure des champs de vitesse de la phase liquide dans des microcanaux de section rectangulaire. Nous avons également pris en compte le phénomène de démouillage, qui joue un rôle important au niveau de la perte de charge et du transfert de matière. Des mesures du coefficient de transfert de matière (kLa) ont été réalisées tandis que l'écoulement associé était enregistré. Les vitesses de bulles, longueurs de bulles et de poches, ainsi que les caractéristiques issues de l’exploitation des champs de vitesse précédemment obtenus, ont été utilisées afin de proposer un modèle modifié pour la prédiction du kLa dans des microcanaux de section rectangulaire. En mettant en évidence l'influence du design du microcanal sur l’hydrodynamique et le transfert de matière, notre travail apporte une contribution importante dans le contrôle en microréacteur des réactions rapides fortement exothermiques et limitées par le transfert de matière. De plus, ce travail a permis d'identifier certaines lacunes en termes de connaissance, ce qui devrait pouvoir constituer l'objet de futures recherches. / The present project deals with the improvement of the design of gas-liquid microreactors. The term microreactor characterizes devices composed of channels that have dimensions in the several tens to several hundreds of microns. Due to their increased surface to volume ratios these devices are a promising way to control fast and highly exothermic reactions, often employed in the production of fine chemicals and pharmaceutical compounds. In the case of gas-liquid systems, these are for example direct fluorination, hydrogenation or oxidation reactions. Compared to conventional equipment microreactors offer the possibility to suppress hot spots and to operate hazardous reaction systems at increased reactant concentrations. Thereby selectivity may be increased and operating costs decreased. In this manner microreaction technology well fits in the challenges the chemical industry is continuously confronted to, which are amongst others the reduction of energy consumption and better feedstock utilization. The main topics which have to be considered with respect to the design of gasliquid μ-reactors are heat and mass transfer. In two phase systems both are strongly influenced by the nature of the flow and thus hydrodynamics play a central role. Consequently we focused our work on the hydrodynamics of the two-phase flow in microchannels and the description of the inter-linkage to gas-liquid mass transfer. In this context we were initially concerned with the topic of gas-liquid flow regimes and the main parameters prescribing flow pattern transitions. From a comparison of flow patterns with respect to their mass transfer capacity, as well as the flexibility offered with respect to operating conditions, the Taylor flow pattern appears to be the most promising flow characteristic for performing fast, highly exothermic and mass transfer limited reactions. This flow pattern is characterized by elongated bubbles surrounded by a liquid film and separated from each other by liquid slugs. In addition to the fact that this flow regime is accessible within a large range of gas and liquid flow rates, and has a relatively high specific interfacial area, Taylor flow features a recirculation motion within the liquid slugs, which is generally assumed to increase molecular transport between the gas-liquid interface and the bulk of the liquid phase. From a closer look on the local hydrodynamics of Taylor flow, including the fundamentals of bubble transport and the description of the recirculation flow within the liquid phase, it turned out that two-phase pressure drop and gas-liquid mass transfer are governed by the bubble velocity, bubble lengths and slug lengths. In the following step we have dealt with the prediction of these key hydrodynamic parameters. In this connection the first part of our experimental study was concerned with the investigation of the formation of bubbles and slugs and the characterization of the liquid phase velocity field in microchannels of rectangular cross-section. In addition we also addressed the phenomenon of film dewetting, which plays an important rôle concerning pressure drop and mass-transfer in Taylor flow. In the second part we focused on the prediction of gas-liquid mass transfer in Taylor flow. Measurements of the volumetric liquid side mass transfer coefficient (kLa-value) were conducted and the related two-phase flow was recorded. The measured bubble velocities, bubble lengths and slug lengths, as well as the findings previously obtained from the characterization of the velocity field were used to set-up a modified model for the prediction of kLa-values in μ-channels of rectangular cross-section. Describing the interaction of channel design hydrodynamics and mass transfer our work thus provides an important contribution towards the control of the operation of fast, highly exothermic and mass transfer limited gas-liquid reactions in microchannels. In addition it enabled us to identify gaps of knowledge, whose investigation should be items of further research.
9

Étude des phénomènes de transfert et de l'hydrodynamique dans des réacteurs agités à panier catalytique / Study of external transport phenomena and hydrodynamics in a stirred catalytic basket reactor

Braga, Maria 11 February 2014 (has links)
Parmi les différents outils de laboratoire, les réacteurs agités triphasiques à panier catalytique sont souvent utilisés pour l'acquisition de données cinétiques avec des catalyseurs mis en forme. Malgré sa large utilisation, très peu d'auteurs se sont intéressés à la caractérisation de l'hydrodynamique et des transferts de matière de ces outils. Or, dans les cas de réactions rapides, des limitations hydrodynamiques et/ou au transfert peuvent conduire à des difficultés à discriminer les catalyseurs ou à obtenir des paramètres cinétiques. L'objectif de cette étude était de connaître le domaine d'applicabilité de ces outils et présenter des pistes d'optimisation. Une méthodologie de caractérisation qui couple une étude hydrodynamique et une étude de transfert de matière a été mise en place. L'étude hydrodynamique a permis d'établir une cartographie des régimes d'écoulement gaz/liquide selon les conditions opératoires et les configurations géométriques. Cette étude a permis d'expliquer les résultats obtenus au niveau du transfert de matière, notamment, l'influence de la présence du panier et des bulles de gaz. Dans la configuration actuelle, cet outil semble être limité par le transfert liquide/solide. Ainsi, avec ce système, des études cinétiques pour des réactions avec une constante cinétique cin k pouvant aller jusqu'à 0,02 s-1 pourront être réalisées. Au-delà, l'outil sera inadapté. Pour améliorer cet outil de test, il faut optimiser le réacteur en modifiant le design du panier et de la turbine, et le diamètre de la cuve de manière à maximiser la vitesse radiale à travers du milieu poreux. Il faut aussi éviter la présence d'un régime de contournement du panier par le liquide / Stationary catalytic basket stirred reactors are often used among the various three-phase laboratory reactors for primary screening of commercial shaped catalysts. Until today, hydrodynamics and mass transfer studies concerning the impact of the presence of the basket in the flow are scarce which can be an obstacle to catalyst screening mainly in the case of fast reactions. The aim of this study is to know the range of applicability of these devices and optimize them if necessary. A characterization methodology that couples hydrodynamics and mass transfer was developed. The hydrodynamic studies allowed establishing a flow regime map of the gas/liquid flow for different reactor designs and operational conditions. This study has allowed as well understanding the influence of the basket and gas bubbles on gas/liquid and solid/liquid mass transfer. For the studied reactor, the liquid/solid mass transfer is the limiting phenomena. This system can however be used for catalyst screening for reaction rate constants smaller than 0.02 s-1. For faster reactions, these devices must be improved by changing the design of basket and impeller and the tank diameter. The optimized configuration should improve de radial flow through the porous medium and avoid the flow bypassing around the basket

Page generated in 0.0704 seconds