Spelling suggestions: "subject:"écoulement dde taylor"" "subject:"écoulement dde baylor""
1 |
ETUDE EXPERIMENTALE D'UN ECOULEMENT DIPHASIQUE DE TAYLOR COUETTEMehel, Amine 20 June 2006 (has links) (PDF)
Ce travail de thèse vise à étudier expérimentalement les mécanismes d'interaction entre les structures de la turbulence et une phase dispersée (gaz ou vapeur) dans une expérience de Taylor Couette avec rotation du cylindre intérieur. Cette étude a été réalisée pour des régimes d'écoulement correspondant aux régimes chaotique (Ta=780), faiblement turbulent (Ta=1000) et turbulent (Ta=4500). La phase dispersée sous forme de bulles, de tailles variées, a été introduite soit par ventilation par agitation de la surface libre, soit par injection associée à une mise en dépression de l'installation. L'intrusion de sondes optiques doubles a permis de caractériser l'arrangement de la phase dispersée (localisation des bulles dans l'entrefer) ainsi que le taux de vide, la taille et la vitesse des bulles. Afin de caractériser la dynamique de l'écoulement, des visualisations couplées à des mesures du champ de vitesse par vélocimétrie Laser Doppler ont été effectuées dans l'entrefer. Des comparaisons fines entre la dynamique du liquide en présence de bulles et celle obtenue en écoulement monophasique ont permis de mettre en évidence les interactions et les mécanismes de couplages ou d'échange entre la structure de l'écoulement et la phase dispersée. En ce qui concerne l'arrangement de la phase dispersée, les résultats ont montré que les bulles de taille millimétrique sont en partie capturées par les cellules de Taylor, une cellule sur deux et en partie localisées dans les zones de jet (outflow) près du cylindre intérieur. Les bulles sub-millimétriques sont essentiellement localisées en région de outflow près du cylindre intérieur mais de manière plus diffuse dans l'entrefer. En ce qui concerne les mécanismes d'interaction entre les bulles et la dynamique du champ de vitesse liquide, il a été montré que les bulles localisées au coeur des cellules contribuent à stabiliser l'écoulement par augmentation de la vorticité alors que les bulles localisées en proche paroi du cylindre intérieur (dans la zone de jet) contribuent à développer la turbulence par augmentation du cisaillement dépendant de la taille des bulles. On a observé globalement un gain d'énergie cinétique turbulente en écoulement diphasique de Taylor Couette principalement dû au travail de cisaillement.
|
2 |
Effets de la rotation sur la dynamique des écoulements et des transferts thermiques dans les machines électriques tournantes de grande taille / Effects of fluid flow on heat transfer in large rotating electrical machinesLancial, Nicolas 28 November 2014 (has links)
EDF exploite sur son parc de production de nombreuses machines électriques tournantes. Les contraintes thermiques subies par celles-ci engendrent des échauffements locaux qui nuisent à leur intégrité. Le présent travail contribue à fournir des méthodes de calcul adaptées à la détection et à la localisation des points chauds. Il participe à améliorer la compréhension des écoulements en rotation et leurs effets sur les transferts thermiques. Plusieurs dispositifs expérimentaux, de complexité ascendante, ont été utilisés pour comprendre et valider les simulations numériques. Une première étude sur une marche descendante (demi-pôle) parcourue par un jet de paroi non-confiné a mis en avant des différences par rapport à un jet confiné ; ces deux cas existent dans un alternateur. Une seconde étude menée sur une cavité tournante confinée a analysé l’impact d’un écoulement de Taylor-Couette-Poiseuille sur la température et la position des points chauds créés, en balayant l’ensemble des régimes d’écoulement. Ces études ont mis en exergue une première méthode de calcul fiable, fondée sur l’étude numérique CHT. Une autre méthode, basée sur la FEM couplée à une méthode inverse, a été testée sur une maquette d’alternateur hydraulique afin de pallier aux temps de calcul longs de la première. Cette méthodologie remonte aux coefficients d’échanges convectifs numériques à partir des mesures du champ thermique du rotor, mais n’est envisageable que lorsque l’on dispose de données expérimentales suffisantes. Ces travaux ont aussi mis en évidence de nouvelles techniques de mesures sans contact, comme l’utilisation d’un pyromètre à haute fréquence pour la mesure de température sur des machines tournantes. / EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydrogenerator) notes significant differences compared to results from confined case : both of them are present in an hydrogenerator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developped new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature.
|
3 |
Cisaillement pariétal et tourbillons en écoulement Taylor-Couette / Wall velocity gradients and vortices in Taylor-Couette flowFaye, El Alioune 31 January 2013 (has links)
Ce travail est une étude expérimentale permettant de mettre en évidence la cartographie générale de l’ensemble des états d’écoulement obtenus entre le régime laminaire de Couette et la turbulence. L’ensemble des expériences a été réalisé dans un dispositif appelé système Taylor-Couette (STC), composé de deux cylindres concentriques avec le cylindre intérieur tournant. Ces différentes instabilités (SPI, TVF, WVF, MWVF, TTVF), qui dépendent principalement du nombre de Taylor (Ta), seront obtenues avec ou sans débit axial dans le STC selon des protocoles d’analyse bien définis et nous notons que le nombre de Reynolds axial (Reax) a un effet de stabilisation de l’écoulement. Les vortex de Taylor toroïdaux, ondulés ou ondulés modulés, ont été caractérisés en termes de gradient pariétal de vitesse, de nombre d’ondes, de longueur d’ondes axiales et azimutales, de la vitesse de déplacement axial, de fréquence et de la vitesse de révolution ; la polarographie sera utilisée comme technique de mesure. La vitesse du cylindre intérieur (Ta) est essentiellement le seul phénomène agissant sur l’évolution de ces paramètres. L’utilisation de la sonde tri-segmentée dans la caractérisation des structures tourbillonnaires a contribué à la compréhension des mécanismes d’interaction vortex-paroi et à la détermination des composantes azimutale et axiale du gradient pariétal de vitesse. / This work is an experimental study to highlight general mapping of the set of states obtained from the Couette laminar flow to turbulence. All experiments were performed in a device called Taylor-Couette system (TCS) which consists of two concentric cylinders with the inner cylinder rotating. The flow regimes (SPI, TVF, WVF, MWVF, TTVF), which depend mainly on the Taylor number (Ta), were obtained with or without axial flow in the TCS according to well-defined experimental protocols. We noted that the axial Reynolds number (Reax) has astabilizing effect on the flow. Using electrodiffusion method and analysis of films, the toroidal Taylor vortices, wavy or wavy modulated flow, were characterized in terms of the wall velocity gradients, wave number, axial and azimuthal wavelength, the axial velocity of vortex displacement, and there frequencies. The Taylor number has substantial effect on the evolution of these parameters in the investigated range. The use of three-segment electrodiffusion has contributed to the understanding of the mechanisms of vortex-wall interaction and the determination of the azimuthal and axial components of the wall velocity gradient.
|
4 |
Design and characterization of gas-liquid microreactors / Design et caractérsation des micro-réacteurs gaz-liquideVölkel, Norbert 04 December 2009 (has links)
Cette étude est dédiée à l'amélioration du design des microréacteurs gaz-liquide. Le terme de microréacteur correspond à des appareils composés de canaux dont les dimensions sont de l’ordre de quelques dizaines à quelques centaines de microns. Grâce à la valeur importante du ratio surface/volume, ces appareils constituent une issue prometteuse pour contrôler les réactions rapides fortement exothermiques, souvent rencontrées en chimie fine et pharmaceutique. Dans le cas des systèmes gaz-liquide, on peut citer par exemple les réactions de fluoration, d’hydrogénation ou d’oxydation. Comparés à des appareils conventionnels, les microréacteurs permettent de supprimer le risque d’apparition de points chauds, et d’envisager le fonctionnement dans des conditions plus critiques, par exemple avec des concentrations de réactifs plus élevées. En même temps, la sélectivité peut être augmentée et les coûts opératoires diminués. Ainsi, les technologies de microréacteurs s’inscrivent bien dans les nouveaux challenges auxquels l'industrie chimique est confrontée ; on peut citer en particulier la réduction de la consommation énergétique et la gestion des stocks de produits intermédiaires. Les principaux phénomènes qui doivent être étudiés lors de la conception d’un microréacteur sont le transfert de matière et le transfert thermique. Dans les systèmes diphasiques, ces transferts sont fortement influencés par la nature des écoulements, et l'hydrodynamique joue donc un rôle central. Par conséquent, nous avons focalisé notre travail sur l’hydrodynamique de l’écoulement diphasique dans les microcanaux et sur les couplages constatés avec le transfert de masse. Dans ce contexte, nous nous sommes dans un premier temps intéressés aux régimes d’écoulement et aux paramètres contrôlant la transition entre les différents régimes. Au vu des capacités de transfert de matière et à la flexibilité offerte en terme de conditions opératoires, le régime de Taylor semble le plus prometteur pour mettre en œuvre des réactions rapides fortement exothermiques et limitées par le transfert de matière. Ce régime d'écoulement est caractérisé par des bulles allongées entourées par un film liquide et séparées les unes des autres par une poche liquide. En plus du fait que ce régime est accessible à partir d’une large gamme de débits gazeux et liquide, l'aire interfaciale développée est assez élevée, et les mouvements de recirculation du liquide induits au sein de chaque poche sont supposés améliorer le transport des molécules entre la zone interfaciale et le liquide. A partir d'une étude de l’hydrodynamique locale d’un écoulement de Taylor, il s’est avéré que la perte de charge et le transfert de matière sont contrôlés par la vitesse des bulles, et la longueur des bulles et des poches. Dans l’étape suivante, nous avons étudié l'influence des paramètres de fonctionnement sur ces caractéristiques de l’écoulement. Une première phase de notre travail expérimental a porté sur la formation des bulles et des poches et la mesure des champs de vitesse de la phase liquide dans des microcanaux de section rectangulaire. Nous avons également pris en compte le phénomène de démouillage, qui joue un rôle important au niveau de la perte de charge et du transfert de matière. Des mesures du coefficient de transfert de matière (kLa) ont été réalisées tandis que l'écoulement associé était enregistré. Les vitesses de bulles, longueurs de bulles et de poches, ainsi que les caractéristiques issues de l’exploitation des champs de vitesse précédemment obtenus, ont été utilisées afin de proposer un modèle modifié pour la prédiction du kLa dans des microcanaux de section rectangulaire. En mettant en évidence l'influence du design du microcanal sur l’hydrodynamique et le transfert de matière, notre travail apporte une contribution importante dans le contrôle en microréacteur des réactions rapides fortement exothermiques et limitées par le transfert de matière. De plus, ce travail a permis d'identifier certaines lacunes en termes de connaissance, ce qui devrait pouvoir constituer l'objet de futures recherches. / The present project deals with the improvement of the design of gas-liquid microreactors. The term microreactor characterizes devices composed of channels that have dimensions in the several tens to several hundreds of microns. Due to their increased surface to volume ratios these devices are a promising way to control fast and highly exothermic reactions, often employed in the production of fine chemicals and pharmaceutical compounds. In the case of gas-liquid systems, these are for example direct fluorination, hydrogenation or oxidation reactions. Compared to conventional equipment microreactors offer the possibility to suppress hot spots and to operate hazardous reaction systems at increased reactant concentrations. Thereby selectivity may be increased and operating costs decreased. In this manner microreaction technology well fits in the challenges the chemical industry is continuously confronted to, which are amongst others the reduction of energy consumption and better feedstock utilization. The main topics which have to be considered with respect to the design of gasliquid μ-reactors are heat and mass transfer. In two phase systems both are strongly influenced by the nature of the flow and thus hydrodynamics play a central role. Consequently we focused our work on the hydrodynamics of the two-phase flow in microchannels and the description of the inter-linkage to gas-liquid mass transfer. In this context we were initially concerned with the topic of gas-liquid flow regimes and the main parameters prescribing flow pattern transitions. From a comparison of flow patterns with respect to their mass transfer capacity, as well as the flexibility offered with respect to operating conditions, the Taylor flow pattern appears to be the most promising flow characteristic for performing fast, highly exothermic and mass transfer limited reactions. This flow pattern is characterized by elongated bubbles surrounded by a liquid film and separated from each other by liquid slugs. In addition to the fact that this flow regime is accessible within a large range of gas and liquid flow rates, and has a relatively high specific interfacial area, Taylor flow features a recirculation motion within the liquid slugs, which is generally assumed to increase molecular transport between the gas-liquid interface and the bulk of the liquid phase. From a closer look on the local hydrodynamics of Taylor flow, including the fundamentals of bubble transport and the description of the recirculation flow within the liquid phase, it turned out that two-phase pressure drop and gas-liquid mass transfer are governed by the bubble velocity, bubble lengths and slug lengths. In the following step we have dealt with the prediction of these key hydrodynamic parameters. In this connection the first part of our experimental study was concerned with the investigation of the formation of bubbles and slugs and the characterization of the liquid phase velocity field in microchannels of rectangular cross-section. In addition we also addressed the phenomenon of film dewetting, which plays an important rôle concerning pressure drop and mass-transfer in Taylor flow. In the second part we focused on the prediction of gas-liquid mass transfer in Taylor flow. Measurements of the volumetric liquid side mass transfer coefficient (kLa-value) were conducted and the related two-phase flow was recorded. The measured bubble velocities, bubble lengths and slug lengths, as well as the findings previously obtained from the characterization of the velocity field were used to set-up a modified model for the prediction of kLa-values in μ-channels of rectangular cross-section. Describing the interaction of channel design hydrodynamics and mass transfer our work thus provides an important contribution towards the control of the operation of fast, highly exothermic and mass transfer limited gas-liquid reactions in microchannels. In addition it enabled us to identify gaps of knowledge, whose investigation should be items of further research.
|
Page generated in 0.0679 seconds