• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réactivité de surface d’oxydes lamellaires, matériaux d’électrode positive dans des accumulateurs au lithium – approches expérimentale et théorique / Surface reactivity of lamellar oxides, positive electrode materials in lithium batteries – experimental and theoretical ways

Andreu, Nathalie 13 July 2012 (has links)
L'objectif de ce travail est de contribuer, par le biais d'approches expérimentales (XPS/chimisorption de sondes gazeuses) et théoriques (approches type DFT), à une meilleure compréhension fondamentale de la réactivité de surface de matériaux d'électrode positive et plus spécifiquement d'oxydes lamellaires lithiés LiMO2. La réactivité de surface du matériau LiCoO2 et l’influence d’une substitution de l’atome de cobalt par l’atome d’aluminium a été étudiée pour avancer dans la compréhension de l’effet bénéfique des « coatings » à base d’alumine. L’étude expérimentale a été centrée sur l’adsorption de SO2 et montre que la présence d’atomes d’aluminium induit une diminution de réactivité : elle génère des espèces de type sulfite, différentes des sulfates seuls identifiés pour LiCoO2. La modélisation de cette adsorption permet la mise en évidence de deux modes d’adsorption distincts : passage d’un contrôle rédox pour LiCoO2 à un contrôle acido-basique pour des matériaux contenant des atomes d’aluminium (LiAlO2), thermodynamiquement moins favorable. L’influence de la nature du métal de transition a été analysée sur la base d’études théoriques également menées sur LiMnO2 et LiNiO2. La modélisation de l’adsorption de SO2 sur les surfaces des matériaux LiMO2 révèle la présence des deux processus de chimisorption (formation de sulfites et sulfates), avec mise en évidence du rôle important des cations de sous-surface dans les processus de réduction conduisant aux sulfates. Cette étude théorique a permis d’interpréter les résultats expérimentaux obtenus pour Li(Ni1/3Mn1/3Co1/3)O2, l’identification de sulfites résulterait de la présence des ions Ni2+ alors que celle de sulfates serait liée à la présence des ions Mn4+ et Co3+. / This work is devoted to a better fundamental understanding of the surface reactivity of positive electrode materials, and specifically lamellar lithiated oxides LiMO2 through experimental (XPS/chemisorption of gaseous probes) and theoretical (DFT calculations) approaches. The beneficial effect of aluminum-based coatings on electrochemical performances is well known but the exact mechanisms are not totally understood. A detailed study of the surface reactivity of LiCoO2 and of the influence of Al/Co substitution is carried out. The experimental approach is focused on SO2 adsorption and shows that Al/Co substitution induces a decrease of the surface reactivity and a change in the nature of adsorbed species (identification of sulfite species whereas only sulfate species are characterized for LiCoO2). Theoretical calculations highlighs two different adsorption modes controlled by redox properties for LiCoO2 and by acid-base properties for -LiAlO2 (less energetically favorable). The theoretical study is extended to LiMnO2 and LiNiO2 in order to analyse the influence of the nature of the transition metal atom. The modelization of SO2 adsorption reveals two chemisorption processes (sulfite and sulfate formation), and highligths the key role of subsurface cations in the reduction process which leads to sulfates. Thus theoretical approach allows on interpretation of the experimental data obtained for Li(Ni1/3Mn1/3Co1/3)O2. The identification of sulfites may be explained by the presence of Ni2+ ions whereas sulfate species may result from the presence Mn4+ and Co3+ ions.

Page generated in 0.1187 seconds