• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • Tagged with
  • 14
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bohrtechnische Erschließung submariner Gashydratlagerstätten

Röntzsch, Silke 25 June 2014 (has links)
Gashydratlagerstätten sind in Permafrostgebieten und unter dem Meeresboden zu finden. Das energetische Potential der weltweiten Gashydratvorkommen, vor allem im submarinen Bereich, ist enorm. Derzeit existiert aber noch keine Technologie mit der sie kommerziell erschlossen werden können. Die größten Herausforderungen bei der bohrtechnischen Erschließung submariner Gashydratlagerstätten werden in der Richtbohrtechnik in geringverfestigten Sedimenten, der Bohrlochstabilität, der Einhaltung eines sehr engen Druckfensters sowie in der Vermeidung ungewollter Dissoziationsvorgänge während des Bohrprozesses gesehen. In der Arbeit werden mögliche Ansätze für die bohrtechnische Erschließung von submarinen Gashydratlagerstätten, speziell für das gerichtete Bohren in unkonsolidierten Formationen, zusammengetragen. Es werden verschiedene Erschließungskonzepte diskutiert und schließlich wird die Machbarkeit von zwei Bohrkonzepten untersucht. Das erste Konzept zielt in erster Linie auf die Herstellung vertikaler Bohrungen zu Produktionstestzwecken in Gashydratlagerstätten ab. Auf Grundlage eines vorhandenen Meeresbodenbohrgerätes wird eine neuartige Technologie entwickelt, mit der eine Tiefsee-Gashydratbohrung abgeteuft, verrohrt und komplettiert werden kann, ohne dass eine Bohrplattform oder ein Bohrschiff eingesetzt werden muss. Das zweite Konzept beinhaltet die Herstellung von horizontalen Produktionsbohrungen für eine kommerzielle Gashydratnutzung. Es wird untersucht, ob und unter welchen Bedingungen solche Bohrungen mit konventionellem Equipment machbar sind. Es wird aufgezeigt, dass die Herausforderungen gemeistert werden können und die bohrtechnische Erschließung submariner Gashydratlagestätten mit beiden Konzepten grundsätzlich machbar erscheint.
12

Raman spectroscopic study of the effect of aqueous salt solutions on the formation and dissociation behavior of CO2 gas hydrates

Holzammer, Christine 13 March 2020 (has links)
I present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from aqueous salt solutions with salinities ranging from 0-11 wt-%, and the salts used were sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl2) and calcium chloride (CaCl2). The experiments were conducted in a high-pressure vessel, in which the aqueous solution was pressurized with liquid CO2 to 6 MPa. First, I investigated how the addition of salts to a CO2-hydrate forming system inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction between strongly and weakly hydrogen bonded water molecules was determined. I observed a decrease in the molar reaction enthalpy of up to 30 % for the highest salt concentration investigated. In addition, the influence of the salts on the solubility of CO2 in water was studied, which was reduced up to 40 %. The results showed that both properties could be well correlated with the effective mole fraction of salt in solution. Furthermore, the decrease in molar reaction enthalpy could be directly correlated with the equilibrium temperature of gas hydrates. This showed that the shift in equilibrium temperature induced by thermodynamic inhibitors was a direct result from the weakened hydrogen bonded network in the water-rich liquid phase before the onset of gas hydrate formation. Additionally, the growth mechanisms of CO2 hydrates were investigated by determining the amount of solid hydrate formed and the respective reaction constant. The reaction constant was not affected by the addition of salts, whereas the maximum amount of solid hydrate formed also showed a good correlation with the effective mole fraction. This finding leads to the assumption that salt does not affect the intrinsic growth mechanisms of hydrate formation, but that the weakened hydrogen bonded network leads to a decrease in the conversion of liquid water to hydrate and more water molecules stay in a liquid in the form of inclusions between the hydrate cages. Lastly, I analyzed the ratio of CO2 and water and the development of hydrogen bonds after the complete dissociation of hydrate. I observed a supersaturation of CO2 in the water-rich phase and found evidence that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. The development of hydrogen bonds in the liquid water-rich phase was the same as before the hydrate formation. These results could be a possible explanation for the memory effect originating from residual nano- and mircodroplets. With this study, I aim to provide a better understanding of the mode of action of thermodynamic inhibitors and to contribute further insights to the controversially debated phenomenon of the memory effect.
13

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 13 March 2015 (has links) (PDF)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.
14

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 16 January 2015 (has links)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.

Page generated in 0.1148 seconds