• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] AN ANALYTICAL MODEL FOR INJECTIVITY TESTS IN MULTILAYERED RESERVOIRS WITH FORMATION CROSSFLOW / [pt] MODELO ANALÍTICO PARA TESTES DE INJETIVIDADE EM RESERVATÓRIOS MULTICAMADAS COM FLUXO CRUZADO DE FORMAÇÃO

ISABELA VASCONCELLOS VIANA 24 June 2021 (has links)
[pt] O teste de injetividade consiste em injetar uma fase, usualmente água, em um reservatório de óleo para coletar informações sobre ele. Conhecer os parâmetros do reservatório pode ser valioso para melhorar a produção de óleo. Muitos estudos têm sido apresentados a respeito do comportamento da pressão em reservatórios multicamadas sob escoamento de fluxo monofásico e, também, durante os testes de injetividade. No entanto, uma solução analítica para o comportamento da pressão em reservatórios de múltiplas camadas durante os testes de injetividade é bem conhecida apenas quando o fluxo cruzado de formação não é considerado. Portanto, o presente trabalho apresenta um modelo analítico no espaço de Laplace para reservatórios radialmente compostos multicamadas considerando o fluxo cruzado de formação sob fluxo monofásico e, então, para reservatórios multicamadas com fluxo cruzado de formação sob fluxo bifásico. A precisão da solução proposta foi verificada através da comparação com um simulador numérico de fluxo. Os resultados fornecidos pelo modelo analítico e pelos dados numéricos foram consistentemente semelhantes. Além disso, os dados obtidos pela solução analítica foram utilizados para estimar a permeabilidade equivalente do reservatório. Os valores calculados apresentaram uma aproximação satisfatória para todos os casos. / [en] The injectivity test consists of injecting a phase, usually water, into an oil reservoir in order to collect information about it. Knowing these reservoir s parameters can be valuable in order to improve oil production. Many studies have been presented regarding the behavior of pressure in multilayered reservoirs under single phase fluid flow and, also, during injectivity tests. However, an analytical solution for pressure behavior in multilayered reservoirs during injectivity tests is well known only when the formation crossflow is not considered. Therefore, the present work attempts to develop an analytical model in the Laplace space for multilayered radially composite reservoirs with formation crossflow under single phase fluid flow, and then, for multilayered reservoirs with formation crossflow under two phase fluid flow. The accuracy of the proposed solution was verified by comparison with a finite difference flow simulator. The results provided by the analytical model and by the numerical data were consistently similar. Furthermore, the data obtained by the analytical solution was used to estimate the reservoir s equivalent permeability. Calculated values presented a satisfactory accuracy for all cases.
2

[pt] ANÁLISE DO COMPORTAMENTO DA PRESSÃO EM TESTES DE INJETIVIDADE UTILIZANDO CONVOLUÇÃO PRESSÃO-PRESSÃO EM UM RESERVATÓRIO RADIALMENTE COMPOSTO / [en] PRESSURE-PRESSURE CONVOLUTION AS A TECHNIQUE TO ANALYZE PRESSURE BEHAVIOR FOR INJECTIVITY TESTS BASED ON A RADIALLY COMPOSITE MODEL

TAHYZ GOMES PINTO 16 October 2023 (has links)
[pt] Teste de injetividade é uma técnica convencional em engenharia de reservatórios, utilizada para a recuperação de óleo em reservatórios e avaliação de formações. Geralmente utiliza-se água como fluido injetado, que resulta em um deslocamento do óleo presente devido ao aumento da pressão nos poros. Durante o teste, a resposta de pressão medida fornece diversas informações sobre os parâmetros do reservatório, tal como dados de permeabilidade. Desta forma, pesquisadores têm se dedicado em encontrar equações matemáticas que modelam a resposta de pressão desses testes com objetivo de gerenciamento e manutenção preditiva do reservatório. Neste trabalho, apresentamos uma nova solução analítica para a análise de testes de injetividade, que combina a técnica de convolução pressão-pressão com um modelo radial composto de duas zonas. Essa solução permite avaliar o teste de injetividade mesmo na ausência de dados precisos de vazão, uma vez que a convolução pressão-pressão utiliza exclusivamente os dados de pressão adquiridos em diferentes posições do reservatório. O modelo considerado consiste em dois poços, um injetor, localizado na zona interna do reservatório, e um observador, na zona externa. A validação da solução proposta foi realizada por meio da comparação dos resultados analíticos com aqueles obtidos em um simulador comercial baseado em diferenças finitas. / [en] The injectivity test is a conventional technique in reservoir engineering used for oil recovery and formation evaluation. Typically, water is injected to displace the existing oil by increasing the pressure in the pores. In this test, the pressure response measurement provides valuable information about the reservoir parameters, including permeability data. Therefore, researchers aim to develop mathematical equations that could accurately model pressure response during these tests for reservoir management and maintenance prediction purposes. This work introduces a new analytical solution for injectivity test analysis. The solution combines the pressure-pressure convolution technique with a two-zone radial model. It allows the evaluation of the injectivity test without precise flow rate data, as the pressure-pressure convolution exclusively uses the pressure data acquired at different positions in the reservoir. The reservoir model comprises an injector well in the inner zone of the reservoir and an observation well in the outer zone for measuring pressure response. The proposed solution was validated by comparing the analytical results with those obtained from a finite differences-based commercial simulator.
3

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 13 March 2015 (has links) (PDF)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.
4

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 16 January 2015 (has links)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.

Page generated in 0.0979 seconds