• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An electromagnetically actuated rotary gate microvalve with bistability

Luharuka, Rajesh 03 January 2007 (has links)
Two types of rotary gate microvalves are developed for flow modulation in a microfluidic system that operates at high flow rate and/or uses particulate flow. This research work encompasses design, microfabrication, and experimental evaluation of these microvalves in three distinct areas compliant micromechanism, microfluidics, and electromagnetic actuation. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifices. The gate is suspended by a novel fully-compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constraints the gate in all other degrees of freedom. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow/port configurations. The suspended gate is made of a soft magnetic material and is electromagnetically actuated like a rotor in a variable-reluctance stepper motor. Therefore, an external electromagnetic (EM) actuation at the integrated set of posts (stator) causes the gate mass to switch from its default angular position to a second angular position. The microvalve chip is fabricated by electroplating a soft magnetic material, Permalloy (Ni80Fe20) in a sacrificial photoresist mold on a Silicon substrate. The inlet/outlet orifices are then etched into the Silicon substrate from the back-side using deep-reactive ion etch process. Finally, the gate structure is released by stripping the PR and seed layers. This research work presents the realization of a new microvalve design that is distinct from traditional diaphragm-type microvalves. The test results are encouraging and show the potential of these microvalves in effectively modulating flow in microfluidic systems that may not require a tight seal. The microvalve uses a novel in-plane rotary bistable micromechanism that may have other applications such as optical shutters, micro-locks, and passive check valves.

Page generated in 0.0607 seconds