• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Numerical Modeling of the Gated and Ungated Ogee Spillway

Luo, Chuyao 29 March 2023 (has links)
Spillways are hydraulic structures that allow dams to release and convey surplus water or flood from the reservoir to the downstream channel. The spillway is a safety structure that prevents the overtopping of the dam. Many dam failure disasters were due to the inadequate capacity of the spillway, which fully illustrates the prominence of spillway design. According to the control structure, spillways can be divided into gated and ungated type. The gated spillway provides better control of the managed water level and reduces the elevation of the top of the dam. Researchers have mostly used experimental models to investigate these two types of spillways in previous literature. In the past few years, following the rapid development of numerical simulation technology, there have been more studies on the numerical modeling of spillways. However, most of the literature was about ungated spillways and most of it considered the case of low head ratios, while the case with gates, especially the case of vertical plane gates, was less investigated. In this study, the hydraulic characteristics, such as velocity, pressure, and discharge coefficient, of the ungated and gated ogee spillways are investigated by means of physical and numerical models for the case of low and high head ratios. The study covered head ratios varying from 1.4 to 4.6 and the relative gate-openings varying from 0.5 to 2. The second main objective of this study was to evaluate the performance of the numerical model to simulate gated and ungated spillways. It mainly employed 2DV OpenFOAM to simulate three turbulence models (realizable k-ε, RNG k-ε, k-ω SST), and the results were compared and calibrated with the experimental results from the physical model tests performed by the author to verify the performance of the numerical model. This study aims to demonstrate that the numerical model can be used as a complementary tool to the physical model to measure the hydraulic performance of ogee spillways.

Page generated in 0.0962 seconds