Spelling suggestions: "subject:"causo skirstomi"" "subject:"gauso skirstomi""
1 |
Priklausomų normaliųjų dydžių ekstremumų momentai / Moments of extremes of normally distributed valuesBurauskaitė, Agnė 09 June 2005 (has links)
Gaussian distribution is the most applied in practice and because of that reason there is a great amount of studies done in this area. In this report we look at Gaussian distribution from a point of view of extreme value theory. More concretely, moments of maximum of normally distributed values are discussed.
There are methods to calculate moments of extremes of independent identically distributed normal values, values with different variances and asymptotical results.
In this work a case of dependant variables is analyzed and aim is to look for results in similar cases that is done for independent variables. Continuing Bachelor’s work formula for moment calculation of maximum of two dependent normal variables with all different parameters is presented. Also there is a proof of formula for calculation of odd order moments of three dependent variable maximum. This result is generalized for random variable vectors of any length. There is a theorem stated, according to which moments of length n vector maximum could be expressed by same order moments of shorter vectors. Unfortunately, because of requirements for numbers n and m, no recursion method could be applied.
Using computer, maximum of various length random vectors with dependent components is simulated and average is analyzed. In experiments relation between mean values of dependent and independent variable maximums is observed. This relation is stated in a form of a formula and proved for vectors of any length. In this... [to full text]
|
2 |
GZD aproksimavimas Gauso dėsniu / Approximation of gzd distributions by normal distributionGiedrytė, Nijolė 08 September 2009 (has links)
Baigiamajame magistro darbe sprendžiamas klasikinis uždavinys, kai tikimybinis skirstinys aproksimuojamas Gauso skirstiniu, panaudojus kelis žinomus metodus. Darbe skirstiniai iš GZD tikimybinių skirstinių klasės aproksimuojami Gauso tikimybiniais skirstiniais. Pritaikytas D. Alfers ir H. Dinges metodas apie beta skirstinio aproksimavimą normaliuoju skirstiniu darbe nagrinėjamiems GZD. Užrašyti neaprėžtai dalių tikimybinių skirstinių formalūs charakteristinių funkcijų bei tankių asimptotiniai skleidiniai panaudojant Apelio daugianarius. Gautos formulės bus naudingos matematinės statistikos specialistams ir ekonomistams, nagrinėjantiems finansuose iškilusias problemas. / In this paper are solved classical problem, i.e. there are used normal approximations employed few well-known methods. In this paper normal approximations are developed for Br. Grigelionis GZD distributions. We are shown what normal approximations used for beta distributions are applied for GZD distributions. In this paper we are applying D. Alfers ir H. Dinges statements about beta distributions asymptotical treatments. It is written down formal characteristic function and density for infinite divisible distributions asymptotical expansion used Apelis polynomial. The results will help to mathematical statistics specialists and cea who are researching problems in finance theory.
|
3 |
GZD aproksimavimas Gauso dėsniu / Approximation of gzd distributions by normal distributionStankevičiūtė, Renata 08 September 2009 (has links)
Baigiamajame magistro darbe sprendžiamas klasikinis uždavinys, kai tikimybinis skirstinys aproksimuojamas Gauso skirstiniu, panaudojus kelis žinomus metodus. Darbe skirstiniai iš GZD tikimybinių skirstinių klasės aproksimuojami Gauso tikimybiniais skirstiniais. Pritaikytas D. Alfers ir H. Dinges metodas apie beta skirstinio aproksimavimą normaliuoju skirstiniu darbe nagrinėjamiems GZD. Užrašyti neaprėžtai dalių tikimybinių skirstinių formalūs charakteristinių funkcijų bei tankių asimptotiniai skleidiniai panaudojant Apelio daugianarius. Gautos formulės bus naudingos matematinės statistikos specialistams ir ekonomistams, nagrinėjantiems finansuose iškilusias problemas. / In this paper are solved classical problem, i.e. there are used normal approximations employed few well-known methods. In this paper normal approximations are developed for Br. Grigelionis GZD distributions. We are shown what normal approximations used for beta distributions are applied for GZD distributions. In this paper we are applying D. Alfers ir H. Dinges statements about beta distributions asymptotical treatments. It is written down formal characteristic function and density for infinite divisible distributions asymptotical expansion used Apelis polynomial. The results will help to mathematical statistics specialists and cea who are researching problems in finance theory.
|
Page generated in 0.0842 seconds