Spelling suggestions: "subject:"gauss suas"" "subject:"gauss sum""
1 |
Generalized Jacobi sums modulo prime powersAlsulmi, Badria January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Christopher G. Pinner
|
2 |
On cyclotomic primality testsBoucher, Thomas Francis 01 August 2011 (has links)
In 1980, L. Adleman, C. Pomerance, and R. Rumely invented the first cyclotomicprimality test, and shortly after, in 1981, a simplified and more efficient versionwas presented by H.W. Lenstra for the Bourbaki Seminar. Later, in 2008, ReneSchoof presented an updated version of Lenstra's primality test. This thesis presents adetailed description of the cyclotomic primality test as described by Schoof, along withsuggestions for implementation. The cornerstone of the test is a prime congruencerelation similar to Fermat's little theorem" that involves Gauss or Jacobi sumscalculated over cyclotomic fields. The algorithm runs in very nearly polynomial time.This primality test is currently one of the most computationally efficient tests and isused by default for primality proving by the open source mathematics systems Sageand PARI/GP. It can quickly test numbers with thousands of decimal digits.
|
3 |
Lehmer Numbers with at Least 2 Primitive DivisorsJuricevic, Robert January 2007 (has links)
In 1878, Lucas \cite{lucas} investigated the sequences $(\ell_n)_{n=0}^\infty$ where
$$\ell_n=\frac{\alpha^n-\beta^n}{\alpha-\beta},$$
$\alpha \beta$ and $\alpha+\beta$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. Lucas sequences are divisibility sequences; if $m|n$, then $\ell_m|\ell_n$, and more generally, $\gcd(\ell_m,\ell_n)=\ell_{\gcd(m,n)}$ for all positive integers $m$ and $n$.
Matijasevic utilised this divisibility property of Lucas sequences in order to resolve Hilbert's 10th problem.
\noindent In 1930, Lehmer \cite{lehmer} introduced the sequences $(u_n)_{n=0}^\infty$ where
\begin{eqnarray*}
u_n& = & \frac{\alpha^{n}-\beta^n}{\alpha^{\epsilon(n)}-\beta^{\epsilon(n)}},\\
\epsilon(n)&=&\left\{\begin{array}{ll} 1, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 1 \pmod 2;\\ 2, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 0\pmod 2;\end{array}\right.
\end{eqnarray*}
$\alpha \beta$ and $(\alpha +\beta)^2$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. The sequences $(u_n)_{n=0}^\infty$ are known as Lehmer sequences, and the terms of these sequences are known as Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to those of Lucas sequences, and he used them to extend the Lucas test for primality.
\noindent We define a prime divisor $p$ of $u_n$ to be a primitive divisor of $u_n$ if $p$ does not divide
$$(\alpha^2-\beta^2)^2u_3\cdots u_{n-1}.$$
Note that in the list of prime factors of the first $n-1$ terms of the sequence $(u_n)_{n=0}^\infty$, a primitive divisor of $u_n$ is a new prime factor.
\noindent We let
\begin{eqnarray*}
\kappa& = & k(\alpha \beta\max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}),\\
\eta & = & \left\{\begin{array}{ll}1\hspace{.1in}\mbox{if}\hspace{.1in}\kappa\equiv 1\pmod 4,\\
2\hspace{.1in}\mbox{otherwise},\end{array}\right.
\end{eqnarray*}
where $k(\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\})$ is the squarefree kernel of $\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}$. On the one hand, building on the work of Schinzel \cite{schinzelI}, we prove that if $n>4$, $n\neq 6$, $n/(\eta \kappa)$ is an odd integer, and the triple $(n,\alpha,\beta)$, in case $(\alpha-\beta)^2>0$, is not equivalent to a triple $(n,\alpha,\beta)$ from an explicit table, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. Moreover, we prove that if $n\geq 1.2\times 10^{10}$, and $n/(\eta \kappa)$ is an odd integer, then the $n$th Lehmer number $u_n$ has at least two primitive divisors.
On the other hand, building on the work of Stewart \cite{stewart77}, we prove that there are only finitely many triples $(n,\alpha,\beta)$, where $n>6$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, such that the $n$th Lehmer number $u_n$ has less than two primitive divisors, and that these triples may be explicitly determined. We determine all of these triples $(n,\alpha,\beta)$ up to equivalence explicitly when $6<n\leq 30$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, and we tabulate the triples $(n,\alpha,\beta)$ we discovered, up to equivalence, for $30<n\leq 500$. Finally, we show that the conditions $n>6$, $n\neq 12$, are best possible, subject to the truth of two plausible conjectures.
|
4 |
Lehmer Numbers with at Least 2 Primitive DivisorsJuricevic, Robert January 2007 (has links)
In 1878, Lucas \cite{lucas} investigated the sequences $(\ell_n)_{n=0}^\infty$ where
$$\ell_n=\frac{\alpha^n-\beta^n}{\alpha-\beta},$$
$\alpha \beta$ and $\alpha+\beta$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. Lucas sequences are divisibility sequences; if $m|n$, then $\ell_m|\ell_n$, and more generally, $\gcd(\ell_m,\ell_n)=\ell_{\gcd(m,n)}$ for all positive integers $m$ and $n$.
Matijasevic utilised this divisibility property of Lucas sequences in order to resolve Hilbert's 10th problem.
\noindent In 1930, Lehmer \cite{lehmer} introduced the sequences $(u_n)_{n=0}^\infty$ where
\begin{eqnarray*}
u_n& = & \frac{\alpha^{n}-\beta^n}{\alpha^{\epsilon(n)}-\beta^{\epsilon(n)}},\\
\epsilon(n)&=&\left\{\begin{array}{ll} 1, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 1 \pmod 2;\\ 2, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 0\pmod 2;\end{array}\right.
\end{eqnarray*}
$\alpha \beta$ and $(\alpha +\beta)^2$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. The sequences $(u_n)_{n=0}^\infty$ are known as Lehmer sequences, and the terms of these sequences are known as Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to those of Lucas sequences, and he used them to extend the Lucas test for primality.
\noindent We define a prime divisor $p$ of $u_n$ to be a primitive divisor of $u_n$ if $p$ does not divide
$$(\alpha^2-\beta^2)^2u_3\cdots u_{n-1}.$$
Note that in the list of prime factors of the first $n-1$ terms of the sequence $(u_n)_{n=0}^\infty$, a primitive divisor of $u_n$ is a new prime factor.
\noindent We let
\begin{eqnarray*}
\kappa& = & k(\alpha \beta\max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}),\\
\eta & = & \left\{\begin{array}{ll}1\hspace{.1in}\mbox{if}\hspace{.1in}\kappa\equiv 1\pmod 4,\\
2\hspace{.1in}\mbox{otherwise},\end{array}\right.
\end{eqnarray*}
where $k(\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\})$ is the squarefree kernel of $\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}$. On the one hand, building on the work of Schinzel \cite{schinzelI}, we prove that if $n>4$, $n\neq 6$, $n/(\eta \kappa)$ is an odd integer, and the triple $(n,\alpha,\beta)$, in case $(\alpha-\beta)^2>0$, is not equivalent to a triple $(n,\alpha,\beta)$ from an explicit table, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. Moreover, we prove that if $n\geq 1.2\times 10^{10}$, and $n/(\eta \kappa)$ is an odd integer, then the $n$th Lehmer number $u_n$ has at least two primitive divisors.
On the other hand, building on the work of Stewart \cite{stewart77}, we prove that there are only finitely many triples $(n,\alpha,\beta)$, where $n>6$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, such that the $n$th Lehmer number $u_n$ has less than two primitive divisors, and that these triples may be explicitly determined. We determine all of these triples $(n,\alpha,\beta)$ up to equivalence explicitly when $6<n\leq 30$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, and we tabulate the triples $(n,\alpha,\beta)$ we discovered, up to equivalence, for $30<n\leq 500$. Finally, we show that the conditions $n>6$, $n\neq 12$, are best possible, subject to the truth of two plausible conjectures.
|
5 |
The Quintic Gauss Sums / Die Gaussschen Summen von Ordnung fuenfFossi, Talom Leopold 25 October 2002 (has links)
No description available.
|
Page generated in 0.0316 seconds