Spelling suggestions: "subject:"gaussian multiplication chaos"" "subject:"maussian multiplication chaos""
1 |
Convergence of processes time-changed by Gaussian multiplicative chaos / ガウス乗法カオスによる時間変更過程の収束についてOoi, Takumu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25093号 / 理博第5000号 / 新制||理||1714(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 Croydon David Alexander, 教授 大木谷 耕司, 准教授 梶野 直孝 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
2 |
Intégrabilité du chaos multiplicatif gaussien et théorie conforme des champs de Liouville / Integrability of Gaussian multiplicative chaos and Liouville conformal field theoryRemy, Guillaume 03 July 2018 (has links)
Cette thèse de doctorat porte sur l’étude de deux objets probabilistes, les mesures de chaos multiplicatif gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane en 1985 et il s’agit aujourd’hui d’un objet extrêmement important en théorie des probabilités et en physique mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, “Quantum geometry of bosonic strings”. Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme des champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Ceci est précisément ce que nous développerons pour le GMC sur le cercle unité. Nous écrirons les équations BPZ qui fournissent des relations non triviales sur le GMC. Le résultat final est la densité de probabilité pour la masse totale de la mesure de GMC sur cercle unité ce qui résout une conjecture établie par Fyodorov et Bouchaud en 2008. Par ailleurs, il s'avère que des techniques similaires permettent également de traiter un autre cas, celui du GMC sur le segment unité, et nous obtiendrons de même des formules qui avaient été conjecturées indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. La dernière partie de cette thèse consiste en la construction de la LCFT sur un domaine possédant la topologie d’une couronne. Nous suivrons les méthodes introduites par David- Kupiainen-Rhodes-Vargas même si de nouvelles techniques seront requises car la couronne possède deux bords et un espace des modules non trivial. Nous donnerons également des preuves plus concises de certains résultats connus. / Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC) measures and Liouville conformal field theory (LCFT). GMC measures were first introduced by Kahane in 1985 and have grown into an extremely important field of probability theory and mathematical physics. Very recently GMC has been used to give a probabilistic definition of the correlation functions of LCFT, a theory that first appeared in Polyakov’s 1981 seminal work, “Quantum geometry of bosonic strings”. Once the connection between GMC and LCFT is established, one can hope to translate the techniques of conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. This is precisely what we develop for GMC on the unit circle. We write down the BPZ equations which lead to non-trivial relations on the GMC. Our final result is an exact probability density for the total mass of the GMC measure on the unit circle. This proves a conjecture of Fyodorov and Bouchaud stated in 2008. Furthermore, it turns out that the same techniques also work on a more difficult model, the GMC on the unit interval, and thus we also prove conjectures put forward independently by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in 2009. The last part of this thesis deals with the construction of LCFT on a domain with the topology of an annulus. We follow the techniques introduced by David-Kupiainen- Rhodes-Vargas although novel ingredients are required as the annulus possesses two boundaries and a non-trivial moduli space. We also provide more direct proofs of known results.
|
Page generated in 0.0791 seconds