Spelling suggestions: "subject:"gaussian process surrogate"" "subject:"maussian process surrogate""
1 |
Precision Aggregated Local ModelsEdwards, Adam Michael 28 January 2021 (has links)
Large scale Gaussian process (GP) regression is infeasible for larger data sets due to cubic scaling of flops and quadratic storage involved in working with covariance matrices. Remedies in recent literature focus on divide-and-conquer, e.g., partitioning into sub-problems and inducing functional (and thus computational) independence. Such approximations can speedy, accurate, and sometimes even more flexible than an ordinary GPs. However, a big downside is loss of continuity at partition boundaries. Modern methods like local approximate GPs (LAGPs) imply effectively infinite partitioning and are thus pathologically good and bad in this regard. Model averaging, an alternative to divide-and-conquer, can maintain absolute continuity but often over-smooth, diminishing accuracy. Here I propose putting LAGP-like methods into a local experts-like framework, blending partition-based speed with model-averaging continuity, as a flagship example of what I call precision aggregated local models (PALM). Using N_C LAGPs, each selecting n from N data pairs, I illustrate a scheme that is at most cubic in n, quadratic in N_C, and linear in N, drastically reducing computational and storage demands. Extensive empirical illustration shows how PALM is at least as accurate as LAGP, can be much faster in terms of speed, and furnishes continuous predictive surfaces. Finally, I propose sequential updating scheme which greedily refines a PALM predictor up to a computational budget, and several variations on the basic PALM that may provide predictive improvements. / Doctor of Philosophy / Occasionally, when describing the relationship between two variables, it may be helpful to use a so-called ``non-parametric" regression that is agnostic to the function that connects them. Gaussian Processes (GPs) are a popular method of non-parametric regression used for their relative flexibility and interpretability, but they have the unfortunate drawback of being computationally infeasible for large data sets. Past work into solving the scaling issues for GPs has focused on ``divide and conquer" style schemes that spread the data out across multiple smaller GP models. While these model make GP methods much more accessible to large data sets they do so either at the expense of local predictive accuracy of global surface continuity. Precision Aggregated Local Models (PALM) is a novel divide and conquer method for GP models that is scalable for large data while maintaining local accuracy and a smooth global model. I demonstrate that PALM can be built quickly, and performs well predictively compared to other state of the art methods. This document also provides a sequential algorithm for selecting the location of each local model, and variations on the basic PALM methodology.
|
2 |
Scalable Estimation and Testing for Complex, High-Dimensional DataLu, Ruijin 22 August 2019 (has links)
With modern high-throughput technologies, scientists can now collect high-dimensional data of various forms, including brain images, medical spectrum curves, engineering signals, etc. These data provide a rich source of information on disease development, cell evolvement, engineering systems, and many other scientific phenomena. To achieve a clearer understanding of the underlying mechanism, one needs a fast and reliable analytical approach to extract useful information from the wealth of data. The goal of this dissertation is to develop novel methods that enable scalable estimation, testing, and analysis of complex, high-dimensional data. It contains three parts: parameter estimation based on complex data, powerful testing of functional data, and the analysis of functional data supported on manifolds. The first part focuses on a family of parameter estimation problems in which the relationship between data and the underlying parameters cannot be explicitly specified using a likelihood function. We introduce a wavelet-based approximate Bayesian computation approach that is likelihood-free and computationally scalable. This approach will be applied to two applications: estimating mutation rates of a generalized birth-death process based on fluctuation experimental data and estimating the parameters of targets based on foliage echoes. The second part focuses on functional testing. We consider using multiple testing in basis-space via p-value guided compression. Our theoretical results demonstrate that, under regularity conditions, the Westfall-Young randomization test in basis space achieves strong control of family-wise error rate and asymptotic optimality. Furthermore, appropriate compression in basis space leads to improved power as compared to point-wise testing in data domain or basis-space testing without compression. The effectiveness of the proposed procedure is demonstrated through two applications: the detection of regions of spectral curves associated with pre-cancer using 1-dimensional fluorescence spectroscopy data and the detection of disease-related regions using 3-dimensional Alzheimer's Disease neuroimaging data. The third part focuses on analyzing data measured on the cortical surfaces of monkeys' brains during their early development, and subjects are measured on misaligned time markers. In this analysis, we examine the asymmetric patterns and increase/decrease trend in the monkeys' brains across time. / Doctor of Philosophy / With modern high-throughput technologies, scientists can now collect high-dimensional data of various forms, including brain images, medical spectrum curves, engineering signals, and biological measurements. These data provide a rich source of information on disease development, engineering systems, and many other scientific phenomena. The goal of this dissertation is to develop novel methods that enable scalable estimation, testing, and analysis of complex, high-dimensional data. It contains three parts: parameter estimation based on complex biological and engineering data, powerful testing of high-dimensional functional data, and the analysis of functional data supported on manifolds. The first part focuses on a family of parameter estimation problems in which the relationship between data and the underlying parameters cannot be explicitly specified using a likelihood function. We introduce a computation-based statistical approach that achieves efficient parameter estimation scalable to high-dimensional functional data. The second part focuses on developing a powerful testing method for functional data that can be used to detect important regions. We will show nice properties of our approach. The effectiveness of this testing approach will be demonstrated using two applications: the detection of regions of the spectrum that are related to pre-cancer using fluorescence spectroscopy data and the detection of disease-related regions using brain image data. The third part focuses on analyzing brain cortical thickness data, measured on the cortical surfaces of monkeys’ brains during early development. Subjects are measured on misaligned time-markers. By using functional data estimation and testing approach, we are able to: (1) identify asymmetric regions between their right and left brains across time, and (2) identify spatial regions on the cortical surface that reflect increase or decrease in cortical measurements over time.
|
Page generated in 0.092 seconds