• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polynomial containment in refinement spaces and wavelets based on local projection operators

Moubandjo, Desiree V. 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: See full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
2

Detection of breast cancer microcalcifications in digitized mammograms : developing segmentation and classification techniques for the processing of MIAS database mammograms based on the wavelet decomposition transform and support vector machines

Al-Osta, Husam E. I. January 2010 (has links)
Mammography is used to aid early detection and diagnosis systems. It takes an x-ray image of the breast and can provide a second opinion for radiologists. The earlier detection is made, the better treatment works. Digital mammograms are dealt with by Computer Aided Diagnosis (CAD) systems that can detect and analyze abnormalities in a mammogram. The purpose of this study is to investigate how to categories cropped regions of interest (ROI) from digital mammogram images into two classes; normal and abnormal regions (which contain microcalcifications). The work proposed in this thesis is divided into three stages to provide a concept system for classification between normal and abnormal cases. The first stage is the Segmentation Process, which applies thresholding filters to separate the abnormal objects (foreground) from the breast tissue (background). Moreover, this study has been carried out on mammogram images and mainly on cropped ROI images from different sizes that represent individual microcalcification and ROI that represent a cluster of microcalcifications. The second stage in this thesis is feature extraction. This stage makes use of the segmented ROI images to extract characteristic features that would help in identifying regions of interest. The wavelet transform has been utilized for this process as it provides a variety of features that could be examined in future studies. The third and final stage is classification, where machine learning is applied to be able to distinguish between normal ROI images and ROI images that may contain microcalcifications. The result indicated was that by combining wavelet transform and SVM we can distinguish between regions with normal breast tissue and regions that include microcalcifications.
3

The Diversity of Variations in the Spectra of Type Ia Supernovae

Wagers, Andrew James 2012 August 1900 (has links)
Type Ia supernovae (SNe Ia) are currently the best probe of the expansion history of the universe. Their usefulness is due chiefly to their uniformity between supernovae (SNe). However, there are some slight variations amongst SNe that have yet to be understood and accounted for. The goal of this work is to uncover relationships between the spectral features and the light curve decline rate, [delta]m₁₅. Wavelet decomposition has been used to develop a new spectral index to measure spectral line strengths independent of the continuum and easily corrected for noise. This new method yields consistent results without the arbitrary uncertainties introduced by current methods and is particularly useful for spectra which do not have a clearly defined continuum. These techniques are applied to SN Ia spectra and correlations are found between the spectral features and light curve decline rate. The wavelet spectral indexes are used to measure the evolution of spectral features which are characterized by 3 or 4 parameters for the most complicated evolution. The three absorption features studied here are associated with sulfur and silicon and all show a transition in strength between 1 to 2 weeks after B-band maximum. Pearson correlation coefficients between spectral features and [delta]m₁₅ are found to be significant within a week of maximum brightness and 3 to 4 weeks post-maximum. These correlations are used to determine the principal components at each epoch among the set of SN spectra in this work. The variation contained in the first principal component (PC1) is found to be greater than 60% to 70% for most epochs and reaching as high as 80% to 90% for epochs with the highest correlations. The same first principal component can be used to relate spectral feature strengths to the decline rate. These relations were used to estimate a SN light curve decline rate from a set of spectra taken over the course of the explosion, from a single spectrum, or from even a single spectral feature. These relationships could be used for future surveys to estimate spectral characteristics from light curve data, such as photometric redshift.
4

Cardinal spline wavelet decomposition based on quasi-interpolation and local projection

Ahiati, Veroncia Sitsofe 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2009. / Wavelet decomposition techniques have grown over the last two decades into a powerful tool in signal analysis. Similarly, spline functions have enjoyed a sustained high popularity in the approximation of data. In this thesis, we study the cardinal B-spline wavelet construction procedure based on quasiinterpolation and local linear projection, before specialising to the cubic B-spline on a bounded interval. First, we present some fundamental results on cardinal B-splines, which are piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r, for r ∈ Z. We start our wavelet decomposition method with a quasi-interpolation operator Qm,r mapping, for every integer r, real-valued functions on R into Sr m where Sr m is the space of cardinal splines of order m, such that the polynomial reproduction property Qm,rp = p, p ∈ m−1, r ∈ Z is satisfied. We then give the explicit construction of Qm,r. We next introduce, in Chapter 3, a local linear projection operator sequence {Pm,r : r ∈ Z}, with Pm,r : Sr+1 m → Sr m , r ∈ Z, in terms of a Laurent polynomial m solution of minimally length which satisfies a certain Bezout identity based on the refinement mask symbol Am, which we give explicitly. With such a linear projection operator sequence, we define, in Chapter 4, the error space sequence Wr m = {f − Pm,rf : f ∈ Sr+1 m }. We then show by solving a certain Bezout identity that there exists a finitely supported function m ∈ S1 m such that, for every r ∈ Z, the integer shift sequence { m(2 · −j)} spans the linear space Wr m . According to our definition, we then call m the mth order cardinal B-spline wavelet. The wavelet decomposition algorithm based on the quasi-interpolation operator Qm,r, the local linear projection operator Pm,r, and the wavelet m, is then based on finite sequences, and is shown to possess, for a given signal f, the essential property of yielding relatively small wavelet coefficients in regions where the support interval of m(2r · −j) overlaps with a Cm-smooth region of f. Finally, in Chapter 5, we explicitly construct minimally supported cubic B-spline wavelets on a bounded interval [0, n]. We also develop a corresponding explicit decomposition algorithm for a signal f on a bounded interval. ii Throughout Chapters 2 to 5, numerical examples are provided to graphically illustrate the theoretical results.
5

Structural Damage Assessment Using Artificial Neural Networks and Artificial Immune Systems

Shi, Arthur Q.X. 01 December 2015 (has links)
Structural health monitoring (SHM) systems have been technologically advancing over the past few years. Improvements in fabrication and microelectronics allow the development of highly sophisticated sensor arrays, capable of detecting and transmitting an unprecedented amount of data. As the complexity of the hardware increases, research has been performed in developing the means to best utilize and effectively process the data. Algorithms from other computational fields are being introduced for the first time into SHM systems. Among them, the artificial neural network (ANN) and artificial immune systems (AIS) show great potential. In this thesis, features are extracted out of the acceleration data with the use of discrete wavelet transforms (DWT)s first. The DWT coefficients are used to calculate energy ratios, which are then classified using a neural network and an AIS algorithm known as negative selection (NS). The effectiveness of both methods are validated using simulated acceleration data of a four story structure exhibiting various damage states via computer simulation.
6

Sparsity and Electromagnetic Imaging in Non-Linear Situations / Parcimonie et imagerie électromagnétique dans des situations non-linéaires

Zaimaga, Hidayet 04 December 2017 (has links)
L'imagerie électromagnétique est le problème de la détermination de la distribution de matériaux à partir de champs diffractés mesurés venant du domaine les contenant et sous investigation. Résoudre ce problème inverse est une tâche difficile car il est mal posé en raison de la présence d'opérateurs intégraux (de lissage) utilisés dans la représentation des champs diffractés en terme de propriétés des matériaux, et ces champs sont obtenus à un ensemble fini et non nécessairement optimal de points via des mesures bruitées. En outre, le problème inverse est non linéaire simplement en raison du fait que les champs diffractés sont des fonctions non linéaires des propriétés des matériaux. Le travail décrit traite du caractère mal posé de ce problème d'imagerie électromagnétique en utilisant des techniques de régularisation basées sur la parcimonie, qui supposent que le(s) diffracteurs(s) ne capture(nt) de fait qu'une petite fraction du domaine d'investigation. L'objectif principal est d'étudier de manière approfondie la régularisation de parcimonie pour les problèmes inverses non linéaires. Par conséquent, nous nous concentrons sur la méthode de Tikhonov non linéaire normalisée qui résout directement le problème de minimisation non linéaire en utilisant les itérations de Landweber, où une fonction de seuillage est appliquée à chaque étape pour promouvoir la contrainte de parcimonie. Ce schéma est accéléré à l'aide d'une méthode de descente de plus grande pente projetée et remplace l'opération de seuillage pour faire respecter cette contrainte. Cette approche a également été implémentée dans un domaine d'ondelettes qui permet une représentation précise de la fonction inconnue avec un nombre réduit de coefficients. En outre, nous étudions une méthode corrélée à la parcimonie qui offre de multiples solutions parcimonieuses qui partagent un support commun non nul afin de résoudre le problème non linéaire concerné. / So-called quantitative electromagnetic imaging focused onto here is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements. Moreover, the inverse problem is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis deals with the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) capture only a small fraction of the investigation domain and/or can be described in sparse fashion on a certain basis. The primary aim of the thesis is to intensively investigate sparsity regularization for nonlinear inverse problems. Therefore, we focus on sparsity-regularized nonlinear Tikhonov method which directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to promote the sparsity constraint. This scheme is accelerated using a projected steepest descent method and replaces the thresholding operation to enforce the sparsity constraint. This approach has also been implemented in wavelet domain which allows an accurate representation of the unknown function with a reduced number of coefficients. Additionally, we investigate a method correlated with the joint sparsity which gives multiple sparse solutions that share a common nonzero support in order to solve concerned nonlinear problem.
7

An Approach Based on Wavelet Decomposition and Neural Network for ECG Noise Reduction

Poungponsri, Suranai 01 June 2009 (has links) (PDF)
Electrocardiogram (ECG) signal processing has been the subject of intense research in the past years, due to its strategic place in the detection of several cardiac pathologies. However, ECG signal is frequently corrupted with different types of noises such as 60Hz power line interference, baseline drift, electrode movement and motion artifact, etc. In this thesis, a hybrid two-stage model based on the combination of wavelet decomposition and artificial neural network is proposed for ECG noise reduction based on excellent localization features: wavelet transform and the adaptive learning ability of neural network. Results from the simulations validate the effectiveness of this proposed method. Simulation results on actual ECG signals from MIT-BIH arrhythmia database [30] show this approach yields improvement over the un-filtered signal in terms of signal-to-noise ratio (SNR).
8

Detection of breast cancer microcalcifications in digitized mammograms. Developing segmentation and classification techniques for the processing of MIAS database mammograms based on the Wavelet Decomposition Transform and Support Vector Machines.

Al-Osta, Husam E.I. January 2010 (has links)
Mammography is used to aid early detection and diagnosis systems. It takes an x-ray image of the breast and can provide a second opinion for radiologists. The earlier detection is made, the better treatment works. Digital mammograms are dealt with by Computer Aided Diagnosis (CAD) systems that can detect and analyze abnormalities in a mammogram. The purpose of this study is to investigate how to categories cropped regions of interest (ROI) from digital mammogram images into two classes; normal and abnormal regions (which contain microcalcifications). The work proposed in this thesis is divided into three stages to provide a concept system for classification between normal and abnormal cases. The first stage is the Segmentation Process, which applies thresholding filters to separate the abnormal objects (foreground) from the breast tissue (background). Moreover, this study has been carried out on mammogram images and mainly on cropped ROI images from different sizes that represent individual microcalcification and ROI that represent a cluster of microcalcifications. The second stage in this thesis is feature extraction. This stage makes use of the segmented ROI images to extract characteristic features that would help in identifying regions of interest. The wavelet transform has been utilized for this process as it provides a variety of features that could be examined in future studies. The third and final stage is classification, where machine learning is applied to be able to distinguish between normal ROI images and ROI images that may contain microcalcifications. The result indicated was that by combining wavelet transform and SVM we can distinguish between regions with normal breast tissue and regions that include microcalcifications.
9

Novel Bayesian multiscale methods for image denoising using alpha-stable distributions

Achim, Alin 19 January 2009 (has links)
Before launching into ultrasound research, it is important to recall that the ultimate goal is to provide the clinician with the best possible information needed to make an accurate diagnosis. Ultrasound images are inherently affected by speckle noise, which is due to image formation under coherent waves. Thus, it appears to be sensible to reduce speckle artifacts before performing image analysis, provided that image texture that might distinguish one tissue from another is preserved. The main goal of this thesis was the development of novel speckle suppression methods from medical ultrasound images in the multiscale wavelet domain. We started by showing, through extensive modeling, that the subband decompositions of ultrasound images have significantly non-Gaussian statistics that are best described by families of heavy-tailed distributions such as the alpha-stable. Then, we developed Bayesian estimators that exploit these statistics. We used the alpha-stable model to design both the minimum absolute error (MAE) and the maximum a posteriori (MAP) estimators for alpha-stable signal mixed in Gaussian noise. The resulting noise-removal processors perform non-linear operations on the data and we relate this non-linearity to the degree of non-Gaussianity of the data. We compared our techniques to classical speckle filters and current state-of-the-art soft and hard thresholding methods applied on actual ultrasound medical images and we quantified the achieved performance improvement. Finally, we have shown that our proposed processors can find application in other areas of interest as well, and we have chosen as an illustrative example the case of synthetic aperture radar (SAR) images. / Ο απώτερος σκοπός της έρευνας που παρουσιάζεται σε αυτή τη διδακτορική διατριβή είναι η διάθεση στην κοινότητα των κλινικών επιστημόνων μεθόδων οι οποίες να παρέχουν την καλύτερη δυνατή πληροφορία για να γίνει μια σωστή ιατρική διάγνωση. Οι εικόνες υπερήχων προσβάλλονται ενδογενώς από θόρυβο, ο οποίος οφείλεται στην διαδικασία δημιουργίας των εικόνων μέσω ακτινοβολίας που χρησιμοποιεί σύμφωνες κυματομορφές. Είναι σημαντικό πριν τη διαδικασία ανάλυσης της εικόνας να γίνεται απάλειψη του θορύβου με κατάλληλο τρόπο ώστε να διατηρείται η υφή της εικόνας, η οποία βοηθά στην διάκριση ενός ιστού από έναν άλλο. Κύριος στόχος της διατριβής αυτής υπήρξε η ανάπτυξη νέων μεθόδων καταστολής του θορύβου σε ιατρικές εικόνες υπερήχων στο πεδίο του μετασχηματισμού κυματιδίων. Αρχικά αποδείξαμε μέσω εκτενών πειραμάτων μοντελοποίησης, ότι τα δεδομένα που προκύπτουν από τον διαχωρισμό των εικόνων υπερήχων σε υποπεριοχές συχνοτήτων περιγράφονται επακριβώς από μη-γκαουσιανές κατανομές βαρέων ουρών, όπως είναι οι άλφα-ευσταθείς κατανομές. Κατόπιν, αναπτύξαμε Μπεϋζιανούς εκτιμητές που αξιοποιούν αυτή τη στατιστική περιγραφή. Πιο συγκεκριμένα, χρησιμοποιήσαμε το άλφα-ευσταθές μοντέλο για να σχεδιάσουμε εκτιμητές ελάχιστου απόλυτου λάθος και μέγιστης εκ των υστέρων πιθανότητας για άλφα-ευσταθή σήματα αναμεμειγμένα με μη-γκαουσιανό θόρυβο. Οι επεξεργαστές αφαίρεσης θορύβου που προέκυψαν επενεργούν κατά μη-γραμμικό τρόπο στα δεδομένα και συσχετίζουν με βέλτιστο τρόπο αυτή την μη-γραμμικότητα με τον βαθμό κατά τον οποίο τα δεδομένα είναι μη-γκαουσιανά. Συγκρίναμε τις τεχνικές μας με κλασσικά φίλτρα καθώς και σύγχρονες μεθόδους αυστηρού και μαλακού κατωφλίου εφαρμόζοντάς τες σε πραγματικές ιατρικές εικόνες υπερήχων και ποσοτικοποιήσαμε την απόδοση που επιτεύχθηκε. Τέλος, δείξαμε ότι οι προτεινόμενοι επεξεργαστές μπορούν να βρουν εφαρμογές και σε άλλες περιοχές ενδιαφέροντος και επιλέξαμε ως ενδεικτικό παράδειγμα την περίπτωση εικόνων ραντάρ συνθετικής διατομής.
10

Emotion Recognition using Spatiotemporal Analysis of Electroencephalographic Signals

Aspiras, Theus H. 21 August 2012 (has links)
No description available.

Page generated in 0.1091 seconds