• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpolatory bivariate refinable functions and subdivision

Rabarison, Andrianarivo Fabien 03 1900 (has links)
Thesis (MSc (Mathematics))--Stellenbosch University, 2008. / See full text for abstract.
2

Interpolatory refinement pairs with properties of symmetry and polynomial filling /

Gavhi, Mpfareleni Rejoyce. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
3

Convergence analysis of symmetric interpolatory subdivision schemes

Oloungha, Stephane B. 12 1900 (has links)
Thesis (PhD (Mathematics))--University of Stellenbosch, 2010. / Contains bibliography. / ENGLISH ABSTRACT: See full text for summary. / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
4

Polynomial containment in refinement spaces and wavelets based on local projection operators

Moubandjo, Desiree V. 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: See full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
5

Vector refinable splines and subdivision

Andriamaro, Miangaly Gaelle 12 1900 (has links)
Thesis (MSc (Mathematics))--Stellenbosch University, 2008. / In this thesis we study a standard example of refinable functions, that is, functions which can be reproduced by the integer shifts of their own dilations. Using the cardinal B-spline as an introductory example, we prove some of its properties, thereby building a basis for a later extension to the vector setting. Defining a subdivision scheme associated to the B-spline refinement mask, we then present the proof of a well-known convergence result. Subdivision is a powerful tool used in computer-aided geometric design (CAGD) for the generation of curves and surfaces. The basic step of a subdivision algorithm consists of starting with a given set of points, called the initial control points, and creating new points as a linear combination of the previous ones, thereby generating new control points. Under certain conditions, repeated applications of this procedure yields a continuous limit curve. One important goal of this thesis is to study a particular extension of scalar subdivision to matrix subdivision ...
6

Interpolatory refinement pairs with properties of symmetry and polynomial filling

Gavhi, Mpfareleni Rejoyce 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2008. / Subdivision techniques have, over the last two decades, developed into a powerful tool in computer-aided geometric design (CAGD). In some applications it is required that data be preserved exactly; hence the need for interpolatory subdivision schemes. In this thesis,we consider the fundamentals of themathematical analysis of symmetric interpolatory subdivision schemes for curves, also with the property of polynomial filling up to a given odd degree, in the sense that, if the initial control point sequence is situated on such a polynomial curve, all the subsequent subdivision iterates fills up this curve, for it to eventually also become also the limit curve. A subdivision scheme is determined by its mask coefficients, which we find convenient to mathematically describe as a bi-infinite sequnce a with finite support. This sequence is in one-to-one correspondence with a corresponding Laurent polynomial A with coefficients given by the mask sequence a. After an introductory Chapter 1 on notation, basic definitions, and an overview of the thesis, we proceed in Chapter 2 to separately consider the issues of interpolation, symmetry and polynomial filling with respect to a subdivision scheme, eventually leading to a definition of the class Am,n of mask symbols in which all of the above desired properties are combined. We proceed in Chapter 3 to deduce an explicit characterization formula for the classAm,n, in the process also showing that its optimally local member is the well-known Dubuc–Deslauriers (DD) mask symbol Dm of order m. In fact, an alternative explicit characterization result appears in recent work by De Villiers and Hunter, in which the authors characterized mask symbols A ∈Am,n as arbitrary convex combinations of DD mask symbols. It turns out that Am,m = {Dm}, whereas the class Am,m+1 has one degree of freedom, which we interpret here in the formof a shape parameter t ∈ R for the resulting subdivision scheme. In order to investigate the convergence of subdivision schemes associated with mask symbols in Am,n, we first introduce in Chapter 4 the concept of a refinement pair (a,φ), consisting of a finitely-supported sequence a and a finitelysupported function φ, where φ is a refinable function in the sense that it can be expressed as a finite linear combination, as determined by a, of the integer shifts of its own dilation by factor 2. After presenting proofs of a variety of properties satisfied by a given refinement pair (a,φ), we next introduce the concept of an interpolatory refinement pair as one for which the refinable function φ interpolates the delta sequence at the integers. A fundamental result is then that the existence of an interpolatory refinement pair (a,φ) guarantees the convergence of the interpolatory subdivision scheme with subdivision mask a, with limit function © expressible as a linear combination of the integer shifts of φ, and with all the subdivision iterates lying on ©. In Chapter 5, we first present a fundamental result byMicchelli, according to which interpolatory refinable function existence is obtained for mask symbols in Am,n if the mask symbol A is strictly positive on the unit circle in complex plane. After showing that the DD mask symbol Dm satisfies this sufficient property, we proceed to compute the precise t -interval for such positivity on the unit circle to occur for the mask symbols A = Am(t |·) ∈Am,m+1. Also, we compare our numerical results with analogous ones in the literature. Finally, in Chapter 6, we investigate the regularity of refinable functions φ = φm(t |·) corresponding to mask symbols Am(t |·). Using a standard result fromthe literature in which a lower bound on the Hölder continuity exponent of a refinable function φ is given explicitly in terms of the spectral radius of a matrix obtained from the corresponding mask sequence a, we compute this lower bound for selected values of m.
7

Multivariate refinable functions with emphasis on box splines

Van der Bijl, Rinske 03 1900 (has links)
Thesis (MComm (Mathematics))--Stellenbosch University, 2008. / The general purpose of this thesis is the analysis of multivariate refinement equations, with focus on the bivariate case. Since box splines are the main prototype of such equations (just like the cardinal B-splines in the univariate case), we make them our primary subject of discussion throughout. The first two chapters are indeed about the origin and definition of box splines, and try to elaborate on them in sufficient detail so as to build on them in all subsequent chapters, while providing many examples and graphical illustrations to make precise every aspect regarding box splines that will be mentioned. Multivariate refinement equations are ones that take on the form (x) =Xi2Zn pi (Mx − i), (1) where is a real-valued function, called a refinable function, on Rn, p = {pi}i2Zn is a sequence of real numbers, called a refinement mask, and M is an n × n matrix with integer entries, called a dilation matrix. It is important to note that any such equation is thus simultaneously determined by all three of , p and M — and the thesis will try and explain what role each of these plays in a refinement equation. In Chapter 3 we discuss the definition of refinement equations in more detail and elaborate on box splines as our first examples of refinable functions, also showing that one can actually use them to create even more such functions. Also observing from Chapter iii iv 2 that box splines demand yet another parameter from us, namely an initial direction matrix D, we focus on the more general instances of these in Chapter 4, while keeping the dilation matrix M fixed. Chapter 5 then in turn deals with the matrix M and tries to generalize some of the results found in Chapter 3 accordingly, keeping the initial direction matrix fixed. Having dealt with the refinement equation itself, we subsequently focus our attention on the support of a (bivariate) refinable function — that is, the part of the xy-grid on which such a function “lives” — and that of a refinement mask, in Chapter 6, and obtain a few results that are in a sense introductory to our work in the next chapter. Next, we move on to discuss one area in which refinable functions are especially applicable, namely subdivision, which is analyzed in Chapter 7. After giving the basic definitions of subdivision and subdivision convergence, and investigating the “sum rules” in Section 7.1, we prove our main subdivision convergence result in Section 7.2. The chapter is concluded with some examples in Section 7.3. The thesis is concluded, in Chapter 8, with a number of remarks on what has been done and issues that are left for future research.
8

Wavelet-Konstruktion als Anwendung der algorithmischen reellen algebraischen Geometrie

Lehmann, Lutz 24 April 2007 (has links)
Im Rahmen des TERA-Projektes (Turbo Evaluation and Rapid Algorithms) wurde ein neuartiger, hochgradig effizienter probabilistischer Algorithmus zum Lösen polynomialer Gleichungssysteme entwickelt und für den komplexen Fall implementiert. Die Geometrie polarer Varietäten gestattet es, diesen Algorithmus zu einem Verfahren zur Charakterisierung der reellen Lösungsmengen polynomialer Gleichungssysteme zu erweitern. Ziel dieser Arbeit ist es, eine Implementierung dieses Verfahrens zur Bestimmung reeller Lösungen auf eine Klasse von Beispielproblemen anzuwenden. Dabei wurde Wert darauf gelegt, dass diese Beispiele reale, praxisbezogene Anwendungen besitzen. Diese Anforderung ist z.B. für polynomiale Gleichungssysteme erfüllt, die sich aus dem Entwurf von schnellen Wavelet-Transformationen ergeben. Die hier betrachteten Wavelet-Transformationen sollen die praktisch wichtigen Eigenschaften der Orthogonalität und Symmetrie besitzen. Die Konstruktion einer solchen Wavelet-Transformation hängt von endlich vielen reellen Parametern ab. Diese Parameter müssen gewisse polynomiale Gleichungen erfüllen. In der veröffentlichten Literatur zu diesem Thema wurden bisher ausschließlich Beispiele mit endlichen Lösungsmengen behandelt. Zur Berechnung dieser Beispiele war es dabei ausreichend, quadratische Gleichungen in einer oder zwei Variablen zu lösen. Zur Charakterisierung der reellen Lösungsmenge eines polynomialen Gleichungssystems ist es ein erster Schritt, in jeder reellen Zusammenhangskomponente mindestens einen Punkt aufzufinden. Schon dies ist ein intrinsisch schweres Problem. Es stellt sich heraus, dass der Algorithmus des TERA-Projektes zur Lösung dieser Aufgabe bestens geeignet ist und daher eine größere Anzahl von Beispielproblemen lösen kann als die besten kommerziell erhältlichen Lösungsverfahren. / As a result of the TERA-project on Turbo Evaluation and Rapid Algorithms a new type, highly efficient probabilistic algorithm for the solution of systems of polynomial equations was developed and implemented for the complex case. The geometry of polar varieties allows to extend this algorithm to a method for the characterization of the real solution set of systems of polynomial equations. The aim of this work is to apply an implementation of this method for the determination of real solutions to a class of example problems. Special emphasis was placed on the fact that those example problems possess real-life, practical applications. This requirement is satisfied for the systems of polynomial equations that result from the design of fast wavelet transforms. The wavelet transforms considered here shall possess the practical important properties of symmetry and orthogonality. The specification of such a wavelet transform depends on a finite number of real parameters. Those parameters have to obey certain polynomial equations. In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. To characterize the set of real solutions of a system of polynomial equations it is a first step to find at least one point in each connected component. Already this is an intrinsically hard problem. It turns out that the algorithm of the TERA-project performes very well with this task and is able to solve a larger number of examples than the best known commercial polynomial solvers.

Page generated in 0.1096 seconds