• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer Experimental Design for Gaussian Process Surrogates

Zhang, Boya 01 September 2020 (has links)
With a rapid development of computing power, computer experiments have gained popularity in various scientific fields, like cosmology, ecology and engineering. However, some computer experiments for complex processes are still computationally demanding. A surrogate model or emulator, is often employed as a fast substitute for the simulator. Meanwhile, a common challenge in computer experiments and related fields is to efficiently explore the input space using a small number of samples, i.e., the experimental design problem. This dissertation focuses on the design problem under Gaussian process surrogates. The first work demonstrates empirically that space-filling designs disappoint when the model hyperparameterization is unknown, and must be estimated from data observed at the chosen design sites. A purely random design is shown to be superior to higher-powered alternatives in many cases. Thereafter, a new family of distance-based designs are proposed and their superior performance is illustrated in both static (one-shot design) and sequential settings. The second contribution is motivated by an agent-based model(ABM) of delta smelt conservation. The ABM is developed to assist in a study of delta smelt life cycles and to understand sensitivities to myriad natural variables and human interventions. However, the input space is high-dimensional, running the simulator is time-consuming, and its outputs change nonlinearly in both mean and variance. A batch sequential design scheme is proposed, generalizing one-at-a-time variance-based active learning, as a means of keeping multi-core cluster nodes fully engaged with expensive runs. The acquisition strategy is carefully engineered to favor selection of replicates which boost statistical and computational efficiencies. Design performance is illustrated on a range of toy examples before embarking on a smelt simulation campaign and downstream high-fidelity input sensitivity analysis. / Doctor of Philosophy / With a rapid development of computing power, computer experiments have gained popularity in various scientific fields, like cosmology, ecology and engineering. However, some computer experiments for complex processes are still computationally demanding. Thus, a statistical model built upon input-output observations, i.e., a so-called surrogate model or emulator, is needed as a fast substitute for the simulator. Design of experiments, i.e., how to select samples from the input space under budget constraints, is also worth studying. This dissertation focuses on the design problem under Gaussian process (GP) surrogates. The first work demonstrates empirically that commonly-used space-filling designs disappoint when the model hyperparameterization is unknown, and must be estimated from data observed at the chosen design sites. Thereafter, a new family of distance-based designs are proposed and their superior performance is illustrated in both static (design points are allocated at one shot) and sequential settings (data are sampled sequentially). The second contribution is motivated by a stochastic computer simulator of delta smelt conservation. This simulator is developed to assist in a study of delta smelt life cycles and to understand sensitivities to myriad natural variables and human interventions. However, the input space is high-dimensional, running the simulator is time-consuming, and its outputs change nonlinearly in both mean and variance. An innovative batch sequential design method is proposed, generalizing one-at-a-time sequential design to one-batch-at-a-time scheme with the goal of parallel computing. The criterion for subsequent data acquisition is carefully engineered to favor selection of replicates which boost statistical and computational efficiencies. The design performance is illustrated on a range of toy examples before embarking on a smelt simulation campaign and downstream input sensitivity analysis.
2

MULTISCALE MODELING AND CHARACTERIZATION OF THE POROELASTIC MECHANICS OF SUBCUTANEOUS TISSUE

Jacques Barsimantov Mandel (16611876) 18 July 2023 (has links)
<p>Injection to the subcutaneous (SC) tissue is one of the preferred methods for drug delivery of pharmaceuticals, from small molecules to monoclonal antibodies. Delivery to SC has become widely popular in part thanks to the low cost, ease of use, and effectiveness of drug delivery through the use of auto-injector devices. However, injection physiology, from initial plume formation to the eventual uptake of the drug in the lymphatics, is highly dependent on SC mechanics, poroelastic properties in particular. Yet, the poroelastic properties of SC have been understudied. In this thesis, I present a two-pronged approach to understanding the poroelastic properties of SC. Experimentally, mechanical and fluid transport properties of SC were measured with confined compression experiments and compared against gelatin hydrogels used as SC-phantoms. It was found that SC tissue is a highly non-linear material that has viscoelastic and porohyperelastic dissipation mechanisms. Gelatin hydrogels showed a similar, albeit more linear response, suggesting a micromechanical mechanism may underline the nonlinear behavior. The second part of the thesis focuses on the multiscale modeling of SC to gain a fundamental understanding of how geometry and material properties of the microstructure drive the macroscale response. SC is composed of adipocytes (fat cells) embedded in a collagen network. The geometry can be characterized with Voroni-like tessellations. Adipocytes are fluid-packed, highly deformable and capable of volume change through fluid transport. Collagen is highly nonlinear and nearly incompressible. Representative volume element (RVE) simulations with different Voroni tesselations shows that the different materials, coupled with the geometry of the packing, can contribute to different material response under the different kinds of loading. Further investigation of the effect of geometry showed that cell packing density nonlinearly contributes to the macroscale response. The RVE models can be homogenized to obtain macroscale models useful in large scale finite element simulations of injection physiology. Two types of homogenization were explored: fitting to analytical constitutive models, namely the Blatz-Ko material model, or use of Gaussian process surrogates, a data-driven non-parametric approach to interpolate the macroscale response.</p>

Page generated in 0.0842 seconds