Spelling suggestions: "subject:"nonlinear finite elements"" "subject:"onlinear finite elements""
1 |
A new scheme for the optimum design of stiffened composite panels with geometric imperfectionsElseifi, Mohamed A. 13 November 1998 (has links)
Thin walled stiffened composite panels, which are among the most utilized structural elements in engineering, possess the unfortunate property of being highly sensitive to geometrical imperfections. Existing analysis codes are able to predict the nonlinear postbuckling behavior of a structure with specified imperfections. However, it is impossible to determine the geometric imperfection profile of a nonexistent composite panel early in the design. This is due to the variety of uncertainties that are involved in the manufacturing of these panels. As a mater of fact, due to the very nature of the manufacturing processes, it is hard to imagine that a given manufacturing process could ever produce two identical panels.
The objective of this study is to introduce a new design methodology in which a manufacturing model and a convex model for uncertainties are used in conjunction with a nonlinear design tool in order to obtain a more realistic, better performing final design. First a finite element code for the nonlinear postbuckling analysis of stiffened panels is introduced. Next, a manufacturing model for the simulation of the autoclave curing of epoxy matrix composites is presented. A convex model for the uncertainties in the imperfections is developed in order to predict the weakest panel profile among a family of panels. Finally, the previously developed tools are linked in a closed loop design scheme aimed at obtaining a final design that incorporates the manufacturing tolerances information through more realistic imperfections. / Ph. D.
|
2 |
Nonlinear Magnetomechanical Modeling and Characterization of Galfenol and System-Level Modeling of Galfenol-Based TransducersEvans, Phillip G. January 2009 (has links)
No description available.
|
3 |
COMPUTATIONAL MECHANOBIOLOGY MODELEVALUATING HEALING OF POSTOPERATIVE CAVITIESFOLLOWING BREAST-CONSERVING SURGERYZachary Joseph Harbin (15360307) 28 April 2023 (has links)
<p>Breast cancer is the most commonly diagnosed cancer type worldwide. Given high survivorship, increased focus has been placed on long-term treatment outcomes and patient quality of life. While breast-conserving surgery (BCS) is the preferred treatment strategy for early-stage breast cancer, anticipated healing and breast deformation (cosmetic) outcomes weigh heavily on surgeon and patient selection between BCS and more aggressive mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to predict, owing to the complexity of the tissue repair process and significant patient-to-patient variability. To overcome this challenge, we developed a predictive computational mechanobiological model that simulates breast healing and deformation following BCS. The coupled biochemical-biomechanical model incorporates multi-scale cell and tissue mechanics, including collagen deposition and remodeling, collagen-dependent cell migration and contractility, and tissue plastic deformation. Available human clinical data evaluating cavity contraction and histopathological data from an experimental porcine lumpectomy study were used for model calibration. The computational model was successfully fit to data by optimizing biochemical and mechanobiological parameters through the Gaussian Process. The calibrated model was then applied to define key mechanobiological parameters and relationships influencing healing and breast deformation outcomes. Variability in patient characteristics including cavity-to-breast volume percentage and breast composition were further evaluated to determine effects on cavity contraction and breast cosmetic outcomes, with simulation outcomes aligning well with previously reported human studies. The proposed model has the potential to assist surgeons and their patients in developing and discussing individualized treatment plans that lead to more satisfying post-surgical outcomes and improved quality of life.</p>
|
4 |
[pt] COMPORTAMENTO DINÂMICO NÃO LINEAR DE COLUNAS DE PERFURAÇÃO DE POÇOS DE PETRÓLEO / [en] NONLINEAR DYNAMIC BEHAVIOR OF OIL-WELL DRILL STRINGS27 December 2021 (has links)
[pt] Esta dissertação estuda o comportamento dinâmico não linear de colunas de perfuração de poços de petróleo. A coluna de perfuração é uma estrutura longa, flexível e esbelta, responsável pela perfuração propriamente dita. Seus elementos e funções são apresentados e uma análise numérica é realizada posteriormente. Foi desenvolvido um programa utilizando o software MATLAB (marca registrada) para simulação numérica do comportamento dinâmico das colunas pelo método dos elementos finitos que utiliza a formulação corotacional para implementação da não linearidade geométrica. A discretização da estrutura utiliza um elemento de viga com seis graus de liberdade por nó aplicando a formulação de viga de Euler-Bernoulli. Para solução do sistema de equações não lineares resultante utiliza-se o método de Newton-Raphson. Além disso, o método de Newmark é utilizado para integração no tempo das equações de movimento do problema. Um modelo com molas lineares é proposto para representar o contato entre a parede do poço e a coluna. A metodologia proposta e as funcionalidades do programa desenvolvido são avaliadas e seus resultados são comparados com algumas soluções analíticas ou numéricas de exemplos disponíveis na literatura. Esses resultados conferem confiabilidade na análise de problemas de coluna de perfuração, que apresentam as séries temporais de deslocamentos e esforços em toda a coluna e os modos de flambagem gerados. Os resultados obtidos demonstram que a coluna é muito sensível a qualquer mudança de condição de contorno, o que corrobora com a complexidade do problema. Assim, o trabalho fornece uma base razoável para desenvolvimentos posteriores, que permitam a análise de toda a coluna de perfuração acoplada. / [en] This work studies the nonlinear dynamic behavior of oil well drillstring, which is a long slender flexible structure responsible for the drilling. Its elements and functions are presented, and numerical analyses are performed later. The work develops a computational code using the software MATLAB (trademark) for the numerical simulation of the column s dynamic behavior using the finite element method. The corotational formulation is used for the implementation of geometric nonlinearity. The structure s discretization uses a beam element with six degrees of freedom per node and employs the Euler-Bernoulli s beam formulation. The Newton-Raphson method is responsible for solving the nonlinear system of equations. In addition, the solution procedure uses the Newmark s method for the time integration of the problem s movement equations. A linear setup spring model is proposed to represent the contact between the borehole wall and the column. The proposed methodology and computational code capabilities are evaluated by comparing some results to analytical or numerical results of examples available in the literature. These results give reliability to analyze drillstring problems, which present the displacements and forces time series of the whole column and the buckling modes generated. The results show that the column is very sensitive to any boundary condition changing, which corroborates the complexity of the problem. Hence, the work proposes a reasonable basis for further developments, allowing the entire coupled drillstring analysis.
|
5 |
MULTISCALE MODELING AND CHARACTERIZATION OF THE POROELASTIC MECHANICS OF SUBCUTANEOUS TISSUEJacques Barsimantov Mandel (16611876) 18 July 2023 (has links)
<p>Injection to the subcutaneous (SC) tissue is one of the preferred methods for drug delivery of pharmaceuticals, from small molecules to monoclonal antibodies. Delivery to SC has become widely popular in part thanks to the low cost, ease of use, and effectiveness of drug delivery through the use of auto-injector devices. However, injection physiology, from initial plume formation to the eventual uptake of the drug in the lymphatics, is highly dependent on SC mechanics, poroelastic properties in particular. Yet, the poroelastic properties of SC have been understudied. In this thesis, I present a two-pronged approach to understanding the poroelastic properties of SC. Experimentally, mechanical and fluid transport properties of SC were measured with confined compression experiments and compared against gelatin hydrogels used as SC-phantoms. It was found that SC tissue is a highly non-linear material that has viscoelastic and porohyperelastic dissipation mechanisms. Gelatin hydrogels showed a similar, albeit more linear response, suggesting a micromechanical mechanism may underline the nonlinear behavior. The second part of the thesis focuses on the multiscale modeling of SC to gain a fundamental understanding of how geometry and material properties of the microstructure drive the macroscale response. SC is composed of adipocytes (fat cells) embedded in a collagen network. The geometry can be characterized with Voroni-like tessellations. Adipocytes are fluid-packed, highly deformable and capable of volume change through fluid transport. Collagen is highly nonlinear and nearly incompressible. Representative volume element (RVE) simulations with different Voroni tesselations shows that the different materials, coupled with the geometry of the packing, can contribute to different material response under the different kinds of loading. Further investigation of the effect of geometry showed that cell packing density nonlinearly contributes to the macroscale response. The RVE models can be homogenized to obtain macroscale models useful in large scale finite element simulations of injection physiology. Two types of homogenization were explored: fitting to analytical constitutive models, namely the Blatz-Ko material model, or use of Gaussian process surrogates, a data-driven non-parametric approach to interpolate the macroscale response.</p>
|
6 |
Nonlinear mechanics and finite element with material damping for the static and dynamic analysis of composite wind turbine blades / Ανάπτυξη μη-γραμμικού προτύπου πεπερασμένου στοιχείου με απόσβεση για τη στατική και δυναμική ανάλυση πτερυγίων ανεμογεννητριώνΧόρτης, Δημήτριος 31 August 2012 (has links)
The aim of the current dissertation is the development of finite element models capable of predicting the damping and the damped structural dynamic response of laminated composite blades and beams. The present thesis is divided into two main parts, of which the first one studies the material coupling effect on the static and modal characteristics of composite structures. New damping coupling terms are formulated and incorporated into a linear beam finite element to better capture the composite material and structural coupling effects.
The second part describes the theoretical framework for predicting the nonlinear damping and damped vibration of laminated composite structures due to large in-plane tensile and compressive forces. A nonlinear beam finite element for composite strips is developed capable of capturing the effects of geometric nonlinearity on the damping of composite laminates. The damping mechanics consider a strain based Kelvin viscoelastic model and Green-Lagrange nonlinear strain expressions, which introduce geometric nonlinearity into the formulation. Incorporation of first-order shear deformation theory into the equations of motion provides the linear and new nonlinear cross-section stiffness and damping terms. Within each element, the stain field is approximated by linear interpolation shape functions. An incremental-iterative methodology is formulated into the finite element solver, based on the Newton-Raphson technique in order to obtain the system solution at each iteration, till the final convergence is achieved. For the sake of completeness, a series of experimental measurements were carried out for the composite strip, subject to tensile and buckling loads. Correlations with theoretical predictions gave credence to the ability of the nonlinear finite element to predict damping of composite structures undergoing large displacements and rotations in the nonlinear regime. The finite element was further extended to include the nonlinear analysis of large-scale hollow composite structures. New first- and second-order stiffness and damping terms were developed and incorporated into an updated nonlinear beam finite element, capable of capturing the effect of rotational stresses on the static and modal characteristics of composite beams and blades. / Σκοπός της παρούσας διδακτορικής διατριβής με τίτλο: "Ανάπτυξη Μη-Γραμμικού Προτύπου Πεπερασμένου Στοιχείου με Απόσβεση για τη Στατική και Δυναμική Ανάλυση Πτερυγίων Ανεμογεννητριών" είναι η ανάπτυξη προτύπων πεπερασμένων στοιχείων με απόσβεση ικανών να προβλέπουν τη στατική και δυναμική απόκριση δοκών και πτερυγίων από σύνθετα υλικά. Η εργασία επικεντρώνεται σε δύο κύριες κατευθύνσεις, που αφορούν τόσο την εισαγωγή νέων όρων στο μητρώο απόσβεσης ενός πεπερασμένου στοιχείου δοκού, όσο και την ανάπτυξη ενός μη-γραμμικού κώδικα πεπερασμένου στοιχείου για τη μελέτη της μη-γραμμικής συμπεριφοράς δοκών και πτερυγίων από σύνθετα υλικά που υπόκεινται σε μεγάλες μετατοπίσεις και περιστροφές.
Στο πρώτο μέρος της διατριβής μελετάται η επίδραση της σύζευξης, λόγω της ανισοτροπίας του σύνθετου υλικού, τόσο στη στατική απόκριση όσο και στα μορφικά χαρακτηριστικά κατασκευών από σύνθετα υλικά, διαφόρων διατομών και γεωμετριών. Διατυπώνονται νέοι όροι απόσβεσης που εκφράζουν την εν λόγω σύζευξη και οι οποίοι καθιστούν το γραμμικό πεπερασμένο στοιχείο δοκού πιο πλήρες στην επίλυση προβλημάτων όπου η σύζευξη υλικού επηρεάζει τη συμπεριφορά της κατασκευής.
Στο δεύτερο και πλέον σημαντικό μέρος της παρούσας διατριβής αρχικά περιγράφεται το θεωρητικό υπόβαθρο για την πρόβλεψη της μη-γραμμικής δυναμικής απόσβεσης λεπτών δοκών κατασκευασμένα από σύνθετα υλικά οι οποίες υπόκεινται σε μεγάλα συν-επίπεδα εφελκυστικά φορτία ή φορτία λυγισμού. Αναπτύσσεται νέο πεπερασμένο στοιχείο ικανό να περιγράψει την επίδραση της γεωμετρικής μη-γραμμικότητας στην απόσβεση και τη δυσκαμψία της δοκού. Εφαλτήριο για την ανάπτυξη αυτής της μεθοδολογίας ήταν η ανάγκη της πρόβλεψης της δυναμικής απόσβεσης σε κατασκευές από σύνθετα υλικά με πιο πολύπλοκη και εύκαμπτη γεωμετρία, όπως αυτή των πτερυγίων ανεμογεννητριών.
Η ανάπτυξη του μη-γραμμικού πεπερασμένου στοιχείου ξεκινά από το επίπεδο της στρώσης του υλικού, όπου διατυπώνονται οι καταστατικές εξισώσεις θεωρώντας το ιξωδοελαστικό πρότυπο του Kelvin για το υλικό της κατασκευής. Στη συνέχεια εισάγονται οι Green-Lagrange εξισώσεις συμβιβαστού οι οποίες εκφράζουν τη γεωμετρική μη-γραμμικότητα καθώς και οι εξισώσεις κίνησης. Σε επίπεδο διατομής, οι κινηματικές υποθέσεις βασίζονται στις παραδοχές της διατμητικής θεωρίας δοκού πρώτης τάξης.
Η πρόβλεψη της μη-γραμμικής απόκρισης μιας κατασκευής από σύνθετα υλικά επιτυγχάνεται μέσω της προσομοίωσης της με έναν επαρκή αριθμό πεπερασμένων στοιχείων. Στο εσωτερικό κάθε στοιχείου οι παραμορφώσεις προσεγγίζονται από γραμμικές συναρτήσεις μορφής, οι οποίες οδηγούν στη μητρωική μορφή των μη-γραμμικών εξισώσεων του συστήματος. Λόγω του γεγονότος ότι οι εξισώσεις αυτές εξαρτώνται από τη λύση, δεν μπορούν να λυθούν απευθείας κάτι που καθιστά αναγκαία τη χρήση μιας σταδιακής-επαναληπτικής τεχνικής. Στην παρούσα διατριβή εισάγεται στο λύτη του μη-γραμμικού κώδικα η Newton-Raphson τεχνική. Το επόμενο βήμα αφορά τη σύνθεση των ολικών δομικών μητρών του συστήματος και την εφαρμογή των συνοριακών συνθηκών. Σε κάθε επανάληψη λαμβάνει χώρα η επίλυση των γραμμικοποιημένων εξισώσεων και ο υπολογισμός των πραγματικών και εφαπτομενικών μη-γραμμικών μητρώων δυσκαμψίας και απόσβεσης της κατασκευής, τα οποία τελικώς επιλύονται με τη μέθοδο της αριθμητικής ολοκλήρωσης κατά Gauss.
Το πεπερασμένο στοιχείο δοκού εξελίχθηκε περαιτέρω ώστε να συμπεριλάβει τη μη-γραμμική ανάλυση μεγάλων λεπτότοιχων κατασκευών από σύνθετα υλικά, όπως αυτά των πτερυγίων ελικοπτέρων και ανεμογεννητριών. Η εισαγωγή της πλήρους έκφρασης της αξονικής μη-γραμμικής Green-Lagrange παραμόρφωσης στη διατύπωση των κινηματικών υποθέσεων οδηγεί στην πλήρη έκφραση των πραγματικών και εφαπτομενικών δομικών μητρών της κατασκευής. Οι νέοι μη-γραμμικοί όροι δυσκαμψίας και απόσβεσης πρώτης και δεύτερης τάξης μπορούν να περιγράψουν την επίδραση των εσωτερικών εφελκυστικών τάσεων στα μορφικά χαρακτηριστικά δοκών και πτερυγίων. Το μη-γραμμικό πεπερασμένο στοιχείο είναι ικανό να χαρακτηρίσει τη στατική συμπεριφορά και την αποσβενυμένη ταλάντωση δοκών από σύνθετα υλικά. Η επαλήθευση του μη-γραμμικού κώδικα πραγματοποιήθηκε μέσω μιας σειράς πειραματικών μετρήσεων που αφορούσαν τη μέτρηση της φυσικής συχνότητας και της μορφικής απόσβεσης σε λεπτές δοκούς από σύνθετα υλικά τόσο σε εφελκυσμό όσο και σε συνθήκες λυγισμού. Τα πειραματικά αποτελέσματα έρχονται σε πολύ καλή συμφωνία με τις θεωρητικές προβλέψεις του κώδικα κάτι που εξασφαλίζει την αξιοπιστία του μη-γραμμικού πεπερασμένου στοιχείου.
|
Page generated in 0.0821 seconds