• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers un modèle particulaire de l'équation de Kuramoto-Sivashinsky

Phung, Thanh Tam 06 July 2012 (has links) (PDF)
Dans cette thèse, on étudie des systèmes de particules en interaction dont le comportement est lié à certaines équations aux dérivées partielles lorsque le nombre de particules tend vers l'infini. L'équation de Kuramoto-Sivashinsky modélise par exemple la propagation de certains fronts de flamme, la topographie de la surface d'une couche mince en cours de croissance, et fait apparaître des structures macroscopiques. Un modèle de particules en interaction par un couplage harmonique des vitesses, attractif aux premières vitesses voisines, répulsive aux secondes voisines, associée à des collisions élastiques, produit des profils de vitesses analogues aux fronts de flamme. On observe également la création et l'annihilation d'agrégats de particules. Un autre modèle, où les particules fusionnent lors des collisions en préservant masse et quantité de mouvement, et avec uniquement attraction au plus proche voisin, permet de retrouver un modèle de type gaz sans pression avec viscosité. Ces modèles sont étudiés théoriquement, en particulier les facteurs de mise à l'échelle des forces d'interaction sont précisés pour obtenir les équations correctes dans la limite du grand nombre de particules. Des simulations numériques confirment la validité et la pertinence des modèles.
2

Vers un modèle particulaire de l'équation de Kuramoto-Sivashinsky / Particle models in connection with Kuramoto-Sivashinsky equation

Phung, Thanh Tam 06 July 2012 (has links)
Dans cette thèse, on étudie des systèmes de particules en interaction dont le comportement est lié à certaines équations aux dérivées partielles lorsque le nombre de particules tend vers l’infini. L’équation de Kuramoto-Sivashinsky modélise par exemple la propagation de certains fronts de flamme, la topographie de la surface d’une couche mince en cours de croissance, et fait apparaître des structures macroscopiques. Un modèle de particules en interaction par un couplage harmonique des vitesses, attractif aux premières vitesses voisines, répulsive aux secondes voisines, associée à des collisions élastiques, produit des profils de vitesses analogues aux fronts de flamme. On observe également la création et l’annihilation d’agrégats de particules. Un autre modèle, où les particules fusionnent lors des collisions en préservant masse et quantité de mouvement, et avec uniquement attraction au plus proche voisin, permet de retrouver un modèle de type gaz sans pression avec viscosité. Ces modèles sont étudiés théoriquement, en particulier les facteurs de mise à l’échelle des forces d’interaction sont précisés pour obtenir les équations correctes dans la limite du grand nombre de particules. Des simulations numériques confirment la validité et la pertinence des modèles. / This work is concerned by systems of interacting particles, which are linked to partial derivative equations when the particle number becomes large enough. The Kuramoto-Sivashinsky equation is actually modeling as well the front flame propagation as the morphology of growing interfaces, in deposition, for example. Moreover, surface periodical macroscopic structuring is occurring. An interacting particle model through an harmonic velocity coupling, attractive with the first velocity-neighbor and repulsive for the second neighbors, associated with elestic collisions. This model thus provides us with velocity profiles close to those of front flame propagation. Creation and annihilation of particle clusters is also observed. Another model, where particle are merging during collisions, while retaining mass and momentum conservation and with only nearest neighbor attraction, allows to recover a viscous pressureless gas model. These models are studied using mathematical tools. Especially interaction scaling factors are determined for obtaining the suitable equations in the large particle number limit. The numerical simulations confirm the relevance of the models.
3

Transport optimal et équations des gaz sans pression avec contrainte de densité maximale / Optimal transportation and pressureless Euler equations with maximal density constraint

Preux, Anthony 21 November 2016 (has links)
Dans cette thèse, nous nous intéressons aux équations des gaz sans pression avec contrainte de congestion qui soulèvent encore de nombreuses questions. La stratégie que nous proposons repose sur des précédents travaux sur le mouvement de foule dans le cadre de l'espace de Wasserstein, et sur un modèle granulaire avec des collisions inélastiques.Elle consiste en l'étude d'un schéma discrétisé en temps dont les suites doivent approcher les solutions de ces équations.Le schéma se présente de la manière suivante : à chaque pas de temps, le champ des vitesses est projeté sur un ensemble lui permettant d'éviter les croisements entre particules, la densité est ensuite déplacée selon le nouveau champ des vitesses, puis est projetée sur l'ensemble des densités admissibles (inférieures à une valeur seuil donnée).Enfin, le champ des vitesses est mis à jour en tenant compte du parcours effectué par les particules. En dimension 1, les solutions calculées par le schéma coïncident avec les solutions connues pour ce système. En dimension 2, les solutions calculées respectent les propriétés connues des solutions des équations de gaz sans pression avec contrainte de congestion. De plus, on retrouve des similarités entres ces solutions et celles du modèle granulaire microscopique dans des cas où elles sont comparables. Par la suite, la discrétisation en espace pose des problèmes et a nécessité l'élaboration d'un nouveau schéma de discrétisation du coût Wasserstein quadratique. Cette méthode que nous avons baptisée méthode du balayage transverse consiste à calculer le coût en utilisant les flux de masses provenant d'une certaine cellule et traversant les hyperplans définis par les interfaces entre les cellules. / In this thesis, we consider the pressureless Euler equations with a congestion constraint.This system still raises many open questions and aside from its one-dimensional version,very little is known. The strategy that we propose relies on previous works of crowd motion models withcongestion in the framework of the Wasserstein space, and on a microscopic granularmodel with inelastic collisions. It consists of the study of a time-splitting scheme. The first step is about the projection of the current velocity field on a set, avoiding the factthat trajectories do not cross during the time step. Then the scheme moves the density with the new velocity field. This intermediate density may violate the congestion constraint. The third step projects it on the set of admissible densities. Finally, the velocity field is updated taking into account the positions of physical particles during the scheme. In the one-dimensional case, solutions computed by the algorithm matchwith the ones that we know for these equations. In the two-dimensional case, computed solutions respect some properties that can be expected to be verified by the solutions to these equations. In addition, we notice some similarities between solutions computed by the scheme and the ones of the granular model with inelastic collisions. Later, this scheme is discretized with respect to the space variable in the purpose of numerical computations of solutions. The resulting algorithm uses a new method to discretize the Wasserstein cost. This method, called Transverse Sweeping Method consists in expressing the cost using the mass flow from any cell and crossing hyperplanes defined by interfaces between cells.
4

Approche probabiliste des particules collantes et système de gaz sans pression

Moutsinga, Octave 16 June 2003 (has links) (PDF)
A chaque instant $t$, nous construisons la dynamique des particules collantes dont la masse est distribuée initialement suivant une fonction de répartition $F_0$, avec une vitesse $u_0$, à partir de l'enveloppe convexe $H(\cdot,t)$ de la fonction $m\in (0,1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz$. Ici, $F_0^(-1)$ est l'une des deux fonctions inverses de $F_0$. Nous montrons que les deux processus stochastiques $X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t)$, définis sur l'espace probabilisé $([0, 1], (\cal B), \lambda)$, sont indistinguables et ils modélisent les trajectoires des particules. Le processus $X_t:= X_t^- = X_t^+$ est une solution de l'équation $(EDS): \; \frac(dX_t)(dt) =\E[ u_0(X_0)/X_t]$, telle que $P(X_0 \leq x) = F_0(x)\,\,\forall x$. L'inverse $M_t:= M(\cdot,t)$ de la fonction $m\mapsto \partial_mH(m,t)$ est la fonction de répartition de la masse à l'instant $t$. Elle est aussi la fonction de répartition de la variable aléatoire $X_t$. On montre l'existence d'un flot $(\phi(x,t,M_s, u_s))_( s < t)$ tel que $X_t= \phi(X_s,t,M_s,u_s)$, où $u_s(x) = \E[ u_0(X_0)/X_s = x]$ est la fonction vitesse des particules à l'instant $s$. Si $\frac(dF_0^n)(dx)$ converge faiblement vers $\frac(dF_0)(dx)$, alors la suite des flots $\phi(\cdot,\cdot,F_0^n,u_0)$ converge uniformément, sur tout compact, vers $\phi(\cdot,\cdot,F_0,u_0)$. Ensuite, nous retrouvons et étendons certains résultats des équations aux dérivées partielles, à savoir que la fonction $(x,t)\mapsto M(x,t)$ est la solution entropique d'une loi de conservation scalaire de donnée initiale $F_0$, et la famille $\big(\rho(dx,t) = P(X_t\in dx),\, u(x,t) = \E[ u_0(X_0)/X_t = x]\big)_(t >0)$ est une solution faible du système de gaz sans pression de données initiales $\frac(dF_0(x))(dx), u_0$. Cette thèse contient aussi d'autres solutions de l'équation différentielle stochastique $(EDS)$ ci-dessus.

Page generated in 0.0961 seconds