• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Near-infrared photodetectors based on Si/SiGe nanostructures

Elfving, Anders January 2006 (has links)
Two types of photodetectors containing Ge/Si quantum dots have been fabricated based on materials grown by molecular beam epitaxy and characterized with several experimental techniques. The aim was to study new device architectures with the implementation of Ge nanostructures, in order to obtain high detection efficiency in the near infrared range at room temperature. Heterojunction bipolar phototransistors were fabricated with 10 Ge dot layers in the base-collector (b-c) junction. With the illumination of near infrared radiation at 1.31 to 1.55 µm, the incident light would excite the carriers. The applied field across the b-c junction caused hole transport into the base, leading to a reduced potential barrier between the emitter-base (e-b) junction. Subsequently, this resulted in enhanced injection of electrons across the base into the collector, i.e., forming an amplified photo-induced current. We have therefore obtained significantly enhanced photo-response for the Ge-dot based phototransistors, compared to corresponding quantum dot p-i-n photodiodes. Responsivity values up to 470 mA/W were measured at 1.31 µm using waveguide geometry, and ∼2.5 A/W at 850 nm, while the dark current was as low as 0.01 mA/cm2 at –2 V. Metal-oxide field-effect phototransistors were also studied. These lateral detectors were processed with three terminals for source, drain and gate contacts. The Ge quantum dot layers were sandwiched between pseudomorphically grown SiGe quantum wells. The detector devices were processed using a multi-finger comb structure with an isolated gate contact on top of each finger and patterned metal contacts on the side edges for source and drain. It was found that the photo-responsivity was increased by a factor of more than 20 when a proper gate bias was applied. With VG above threshold, the measured response was 350 and >30 mA/W at 1.31 and 1.55 µm, respectively. Properties of Si/Si1-xGex nanostructures were examined, in order to facilitate proper design of the above mentioned transistor types of photodetectors. The carrier recombination processes were characterized by photoluminescence measurements, and the results revealed a gradual change from spatially indirect to direct transitions in type II Si1-xGex islands with increased measurement temperature. Energy dispersive X-ray spectrometry of buried Ge islands produced at different temperatures indicated a gradual decrease of the Ge concentration with temperature, which was due to the enhanced intermixing of Si and Ge atoms. At a deposition temperature of 730°C the Ge concentration was as low as around 40 %. Finally, the thermal stability of the Si/SiGe(110) material system, which is a promising candidate for future CMOS technology due to its high carrier mobility, was investigated by high resolution X-ray diffraction reciprocal space mapping. Anisotropic strain relaxation was observed with maximum in-plane lattice mismatch in the [001] direction. / On the day of the defence date the status of article IV was Manuscript and the title was "A three-terminal Ge dot/SiGe quantum well MOSFET photodetector for near infrared light detection"; the status of article VI was Submitted and the title was "Band alignment studies in Si/Ge quantum dots based on optical and structural investigations"; the status of article VII was Manuscript and the title was "Thermal stability of SiGe/Si(110) investigated by high-resolution X-ray diffraction reciprocal space mapping".
2

Growth and characterization of Ge quantum dots on SiGe-based multilayer structures / Tillväxt och karaktärisering av Ge kvantprickar på SiGe-baserade multilager strukturer

Frisk, Andreas January 2009 (has links)
<p>Thermistor material can be used to fabricate un-cooled IR detectors their figure of merit is the Temperature Coefficient of Resistance (TCR). Ge dots in Si can act as a thermistor material and they have a theoretical TCR higher than for SiGe layers but they suffer from intermixing of Si into the Ge dots. Ge dots were grown on unstrained or strained Si layers and relaxed or strained SiGe layers at temperatures of 550 and 600°C by reduced pressure chemical vapor deposition (RPCVD). Both single and multilayer structures where grown and characterized. To achieve a strong signal in a thermal detector a uniform shape and size distribution of the dots is desired. In this thesis work, an endeavor has been to grow uniform Ge dots with small standard deviation of their size. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to characterize the size and shape distribution of Ge dots. Ge contents measured with Raman spectroscopy are higher at lower growth temperatures. Simulation of TCR for the most uniform sample grown at 600°C give 4.43%/K compared to 3.85%/K for samples grown at 650°C in a previous thesis work.</p><p>Strained surfaces increases dot sizes and make dots align in crosshatched pattern resulting in smaller density, this effect increases with increasing strain.</p><p>Strain from buried layers of Ge dots in a multilayer structure make dots align vertically. This alignment of Ge dots was very sensitive to the thickness of the Si barrier layer. The diameter of dots increase for each period in a multilayer structure. When dots are capped by a Si layer at the temperature of 600°C intermixing of Si into the Ge dot occurs and the dot height decrease.</p>
3

Growth and characterization of Ge quantum dots on SiGe-based multilayer structures / Tillväxt och karaktärisering av Ge kvantprickar på SiGe-baserade multilager strukturer

Frisk, Andreas January 2009 (has links)
Thermistor material can be used to fabricate un-cooled IR detectors their figure of merit is the Temperature Coefficient of Resistance (TCR). Ge dots in Si can act as a thermistor material and they have a theoretical TCR higher than for SiGe layers but they suffer from intermixing of Si into the Ge dots. Ge dots were grown on unstrained or strained Si layers and relaxed or strained SiGe layers at temperatures of 550 and 600°C by reduced pressure chemical vapor deposition (RPCVD). Both single and multilayer structures where grown and characterized. To achieve a strong signal in a thermal detector a uniform shape and size distribution of the dots is desired. In this thesis work, an endeavor has been to grow uniform Ge dots with small standard deviation of their size. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to characterize the size and shape distribution of Ge dots. Ge contents measured with Raman spectroscopy are higher at lower growth temperatures. Simulation of TCR for the most uniform sample grown at 600°C give 4.43%/K compared to 3.85%/K for samples grown at 650°C in a previous thesis work. Strained surfaces increases dot sizes and make dots align in crosshatched pattern resulting in smaller density, this effect increases with increasing strain. Strain from buried layers of Ge dots in a multilayer structure make dots align vertically. This alignment of Ge dots was very sensitive to the thickness of the Si barrier layer. The diameter of dots increase for each period in a multilayer structure. When dots are capped by a Si layer at the temperature of 600°C intermixing of Si into the Ge dot occurs and the dot height decrease.

Page generated in 0.0328 seconds