Spelling suggestions: "subject:"gelatine"" "subject:"elatine""
11 |
Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications / Herstellung und Charakterisierung von elektrogesponnenen Nanofasern aus Gelatine und NCO-sP(EO-stat-PO) für Tissue Engineering AnwendungenWiesbeck, Christina January 2019 (has links) (PDF)
In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) (“sPEG”). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages. / Tissue Engineering Scaffolds aus natürlichen Polymeren zeigen häufig mangelnde Stabilität, insbesondere unter physiologischen Bedingungen. Das natürliche Polymer Gelatine besitzt einige sehr vorteilhafte Eigenschaften für die Anwendung bei der Produktion künstlicher Körpergewebe. Beim Einsatz im menschlichen Organismus ist die Gelatine durch ihre Wasserlöslichkeit höchst fragil. Das Ziel dieser Arbeit war die Herstellung von Nanofaser-Scaffolds aus Gelatine mittels Elektrospinning und deren in situ Stabilisierung durch das Sternpolymer NCO-sP(EO-stat-PO) („sPEG“). Zunächst wurde ein Spinningprotokoll zur Fabrikation homogener, glatter, 500 bis 1000 nm dicker Nanofasern in verschiedenen Verhältnissen von Gelatine und sPEG erarbeitet. Mittels REM Bildgebung, Zugversuchen, Wasserinkubationsversuchen, FTIR, EDX und Zellkultur wurden die Fasern untersucht und charakterisiert. Es konnte gezeigt werden, dass die Zugabe von sPEG während des Spinningprozesses zu einer sichtbaren Quervernetzung der Fasern, sowie zu einem Anstieg der mechanischen Festigkeit und der Wasserstabilität führt. Des Weiteren wurde die Biokompatibilität der Nanofasern in der Zellkultur mit RAW 264.7 Makrophagen belegt.
|
12 |
Určení stupně degradace kolagenu pomocí spektroskopie / Determination of collagen degradation degree using spectroscopyFišerová, Kateřina January 2009 (has links)
Předložená diplomová práce se zabývá charakterizací vlastností kolagenu po působení různých fyzikálních a chemických podmínek. Jejím cílem je popsat změny struktury kolagenu způsobené jeho modifikací, zhodnotit dopad těchto změn na další použití kolagenu a výběr vhodné metody pro determinaci vlastností kolagenu. V literární rešerši je popsána chemická struktura kolagenu, jeho využití jako biomateriálu, stabilita kolagenu a způsoby určení stupně porušení nativní kolagenní struktury. V experimentální části jsou vodné roztoky hovězího kolagenu typu I modifikovány působením různých podmínek - různé intenzity a délky dezintegrace (1 minuta při 6 000 otáčkám až 5 minut při 14 000 otáčkách), různé teploty přípravy (4 °C, pokojová teplota a 30 °C), různou dobou přípravy (1 až 5 dní), působením světla (1 až 14 dní) a úpravou pH (4 až 8). Za účelem popsání struktury kolagenu a změn, k nimž došlo během modifikace kolagenních vzorků působením různých podmínek jsou kolagenní roztoky analyzovány UV VIS spektrometrií a infračervenou spektrometrií. UV-VIS spektrometrií byly analyzovány barevné produkty reakce volných aminoskupin přítomných v kolagenu s vhodným činidlem. Jako činidlo byl použit vodný roztok kyseliny 2,4,6 trinitrobenzensulfonové a roztok ninhydrinu v alkoholu. V případě FT-IR spektrometrie byly kolagenní vzorky analyzovány buď v podobě KBr tablet nebo pomocí ATR techniky v podobě filmů. Pro vyhodnocení změn ve struktuře kolagenu byla využita dekonvulace amidu I, jednoho z charakteristických pásů v infračerveném spektru kolagenu, který leží v oblasti 1590 - 1720 cm-1. Na základě snímků pořízených pomocí SEM byla porovnána morfologie kolagenních vzorků. V souladu s teoretickými předpoklady bylo zjištěno, že k nejvýraznějšímu porušení kolagenní struktury dochází při dlouhodobém stání kolagenního roztoku na světle. Podstatné změny způsobuje i zvýšení teploty a téměř žádný vliv na strukturu kolagenu nemá intenzita dezintegrace kolagenního roztoku. V případě zvýšení pH, byly vzorky do pH 5 stabilní a homogenní, ale poté docházelo k oddělení kolagenní fáze a srážení kolagenu, což ovlivnilo a zkreslilo UV-VIS analýzu. Nejlepších vlastností dosahují vzorky zamražené čerstvě po přípravě, dezintegrované 4 minuty při 14 000 otáčkách při 30 °C a beze změny pH. Na základě výsledků analýz se jako vhodné metody pro stanovení stupně porušení kolagenní struktury ukázala UV VIS spektrometrie s využitím kyseliny 2,4,6 trinitrobenzensulfonové v kombinaci s infračervenou spektrometrií kolageních filmů.
|
13 |
Untersuchung zweier Gewebekleber auf Basis von Fibrinogen und Gelatine zur Knorpeladhäsion und -integration in einem In vitro Push-out-Modell / Investigation of two tissue adhesives based on fibrinogen and gelatin for cartilage adhesion and integration in an in vitro push-out modelMeister, Johannes Maximilian January 2022 (has links) (PDF)
Osteoarthrose ist eine häufige Erkrankung des Menschen, die mit einer deutlichen Morbidität und körperlichen Einschränkungen assoziiert ist. Weil Knorpelgewebe avaskulär ist und die Chondrozyten sich in einem postmitotischen Zustand befinden, besitzt Knorpel nur sehr geringes Selbstheilungspotenzial. Es gibt momentan keine effektive Therapie der Arthrose. Obwohl regenerative Ansätze mit dem Tissue Engineering von Knorpelgewebe vielversprechende Therapiealternativen darstellen, stellt die mangelnde laterale Integration von Knorpelgewebe ein chronisches Problem dar, das die Implantation von Knorpelkonstrukten vor Schwierigkeiten stellt. Die optimale Integrationsmethode sollte das Gewebe stark verbinden, klinisch schnell und einfach angewendet werden können, ein hohes Maß an Biokompatibilität besitzen und außerdem die Gewebereparatur fördern. In dieser Arbeit wurden natives Fibrinogen und unmodifizierte Gelatine in gelöster Form mittels einer neuartigen und schnellen Photooxidationsmethode unter Verwendung von Rutheniumkomplexen und Licht aus dem sichtbaren Spektrum zu Klebern vernetzt. Dabei ließ sich feststellen, dass insbesondere der Kleber aus Ruthenium und Gelatine Potenzial besitzt, Einsatz als Bioadhäsivum im Bereich Tissue Engineering von Knorpelgewebe zu finden. Ausschlaggebend dafür ist die Herstellung einer suffizienten Sofortadhäsion zwischen gegenüberliegenden Knorpelflächen einerseits, sowie die Förderung der Langzeitintegration andererseits, die für eine Stimulierung der Gewebereparatur im echten Knorpeldefekt vielversprechend ist. Weitere Forschung ist jedoch nötig, um die Abgrenzung der mechanischen Integration gegenüber der Kontrollgruppe besser zu unterstreichen und das Material weiteren Untersuchungen wie einer Analyse des Quellverhaltens zu unterziehen. Schließlich sollte das regenerative Potenzial des Gewebeklebers in in vivo Tiermodellen weiter systematisch untersucht werden. Zudem lieferte diese Arbeit vielversprechende Ergebnisse für den potenziellen Einsatz von RuGel im Bereich hydrogelbasiertes Tissue Engineering. / Osteoarthritis is a common human disease associated with significant morbidity and physical limitations. Because cartilage tissue is avascular and chondrocytes are in a post-mitotic state, cartilage has very little self-healing potential. There is currently no effective therapy for osteoarthritis. Although regenerative approaches using tissue engineering of cartilage tissue are promising therapeutic alternatives, the lack of lateral integration of cartilage tissue is a chronic problem that poses difficulties for the implantation of cartilage constructs. The optimal integration method should strongly connect the tissue, be clinically fast and easy to apply, have a high degree of biocompatibility, and also promote tissue repair. In this work, native fibrinogen and unmodified gelatin in dissolved form were crosslinked into adhesives by a novel and rapid photooxidation method using ruthenium complexes and visible spectrum light. It was found that the adhesive made of ruthenium and gelatin in particular has the potential to be used as a bioadhesive in the field of tissue engineering of cartilage tissue. Crucial for this is the establishment of a sufficient immediate adhesion between opposing cartilage surfaces on the one hand, and the promotion of long-term integration on the other hand, which is promising for stimulating tissue repair in real cartilage defects. However, further research is needed to better emphasize the delineation of mechanical integration versus the control group and to subject the material to further investigations such as an analysis of swelling behavior. Finally, the regenerative potential of the tissue adhesive should be further systematically investigated in in vivo animal models. In addition, this work provided promising results for the potential use of RuGel in hydrogel-based tissue engineering.
|
14 |
Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln / Development and characterization of gelatin-based hydrogels and PLGA-based Janus particlesSchönwälder, Sina Maria Siglinde January 2016 (has links) (PDF)
Zusammenfassung
In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für
die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der
Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist
eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen-
Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe
in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und
umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht.
Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen
und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu
analysieren.
Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten
Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt.
Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen
untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles
Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen
Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf
unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess
präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie
und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig
von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte
Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit
Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick
auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner
Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten
Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die
Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht
nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen
(Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten
Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere
Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten
Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische
Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen
Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen
werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung.
Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen
und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt.
Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten
Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von
unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen
und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser
Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente
Screening von unterschiedlichen Proteinzusammensetzungen.
Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt
werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch
abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die
Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit
Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung
dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der
erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher
besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting
mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten
(Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei
Lungeninfektionen zu untersuchen.
Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus
biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA)
hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein
Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum
(Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten
Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen
mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden.
Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine
kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte
Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das
Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in
eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit
P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse
als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte
Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen
Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge.
Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten.
Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings,
bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen
Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand
der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen
Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es
möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich
der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine
hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane
Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von
ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren
Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen
Methoden bestätigt werden konnte.
Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können
für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen,
modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe
und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten
Resultate bekräftigen. / In the field of regenerative medicine, polymer-based biomaterials are of great importance for the
development and application of improved or new therapies. The research on the surface properties of
biomaterials, which are used as implants, is essential for their successful use. The
protein-surface interaction is the initial step and occurs when an implant comes into contact with
bodily fluids or tissues and significantly increases direct interaction of the implant and the
surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the
project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the
adsorption of human plasma and bacterial proteins.
The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified
surfaces were carried out using a spin coater. To gain hydrogel films with reproducible
properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each
other and with those of the amine modification by a biocompatible diisocyanate. The result was a
reproducible and chemically stable gelatin film, which could be applied to a wide variety of
surfaces through the substrate-independent amine modification. The manufacturing process precisely
adjusted the layer thickness to the nano- or micrometer scale which could be determined applying
ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer
thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by
electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin
films were chemically characterized in terms of stability. The adsorption of human plasma proteins
(single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants
belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz
crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the
gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties
of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on
the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins
migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent
MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins
on the investigated surfaces. Only slight differences were found in the adsorbed protein
composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure
gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data
analysis, it was possible to clearly differentiate between the examined samples. Not only does this
approach enable us to screen the adsorption of different proteins on protein-based surfaces without
labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new
perspectives regarding the design and efficient
screening of different protein compositions. ...
|
15 |
New Automated Industrial Technologies for Improving Chemical Penetration of Bovine Pieces in the Raw Material Processing and Conditioning Areas of Gelatine ManufactureWittich, William John January 2005 (has links)
The production of gelatine at Gelita N.Z. Ltd. is a time consuming process. The time limiting step in the process is the pre-treatment of the collagen tissue of the raw material in a lime/sodium sulfide solution. The liming solution breaks down the collagen in the tissue to gelatine. This is a necessary step prior to the extraction of gelatine from the hide pieces. The current liming process takes nearly 50 days to complete. Methods were investigated to increase the rate of penetration of the chemicals into the bovine hide raw material. An increase in the penetration of the liming solutions would lead to shorter processing times for this step in the process. The methods that were investigated were temperature controlled mixing, fluidization of the hide pieces and the use of ultrasound. Of all the methods tested, the fluidization of the hide pieces gave the best results. The pretreatment time of the hide pieces was reduced 9 days with this technique. Methods were also investigated to monitor the levels of conditioning in the raw material An accurate technique to measure hide conditioning was important to pilot plant trials. This helped determine how well any of the trail methods increased the penetration of chemicals into the hide pieces. The use of an ultraviolet dye proved an effective method of measuring conditioning for all the pilot plant trials. The level of chemical penetration was monitored by assessing the penetration of the UV dye. The penetration of the UV dye could be quantified by using imaging software. A possible method of monitoring conditioning in full-scale production was tested. It was determined that the glycosaminoglycans and soluble collagen released into the liming solution could be accurately measured, and related to the overall conditioning of the raw material.
|
16 |
Entwicklung und Charakterisierung sprühgetrockneter Mikropartikel mit Gelatine und Transportuntersuchungen von Gelatinehydrolysaten /Kälkert, Katrin. January 2004 (has links)
Universiẗat, Diss--Heidelberg, 2004. / Zusfassung in engl. Sprache.
|
17 |
Recovery and application of natural food colorants and phenolic antioxidants from grape pomaceMaier, Thorsten Holger January 2010 (has links)
Zugl.: Hohenheim, Univ., Diss., 2010
|
18 |
Verbleib in Knochen gebundener Rückstände von Tetracyclinen während der Herstellung von Gelatine mit dem sauren AufschlussverfahrenSchulze, Frauke. Unknown Date (has links) (PDF)
Tierärztl. Hochsch., Diss., 2003--Hannover.
|
19 |
Vergleich verschiedener Aufschlussverfahren zur Herstellung von Gelatine aus Knochen im Hinblick auf Rückstände von TetracyclinenWeidenberg, Elke. Unknown Date (has links) (PDF)
Tierärztl. Hochsch., Diss., 2002--Hannover.
|
20 |
Untersuchung des zellbiologischen Verhaltens von Fibroblasten in modifizierten Gelatine-Methacrylat basierten Harzen für den volumetrischen Biodruck / Investigation of the cell biological behavior of fibroblasts in modified gelatin-methacrylate based resins for volumetric bioprintingWitteler, Charlotte Marie January 2024 (has links) (PDF)
Was vor einigen Jahren undenkbar erschien, könnte zukünftig möglich sein: Krankes Gewebe mit Gesundem ersetzen, das in vitro mit modernsten Biofabrikationstechniken hergestellt wird. Dabei werden bisherige Grenzen überschritten: Während lichtbasierte Biodruckverfahren wie die Zwei-Photonen-Polymerisation Auflösungen bis in den Nanometerbereich erzielen, ermöglicht der Volumetrische Biodruck (VB) den Druck zentimetergroßer Konstrukte in wenigen Sekunden. Diese Geschwindigkeiten erweisen sich unter Biodruckverfahren als konkurrenzlos und werden erreicht, da das Bioharz nicht konsekutiv, sondern zugleich vernetzt wird. Einschränkend gilt bislang nur der Mangel an geeigneten Bioharzen für den VB. Daher beschäftigt sich vorliegende Arbeit mit der Charakterisierung und Modifikation eines dafür geeigneten Bioharzes: Gelatine-Methacrylat (GelMA). Dank seiner Zusammensetzung ähnelt das etablierte Hydrogelsystem der Extratrazellularmatrix: Der Gelatine-Anteil ermöglicht Biokompatibilität und Bioaktivität durch zelladhäsive sowie degradierbare Aminosäure-Sequenzen. Zugleich können durch photovernetzbare Methacryloyl-Substituenten Konstrukte mit einer Formstabilität bei 37 °C erzeugt werden.
Zunächst wurde das Bioharz zellbiologisch charakterisiert, indem mit der embryonalen Mausfibroblasten-Zelllinie NIH-3T3 beladene GelMA-Zylinder gegossen, photopolymerisiert und kultiviert wurden. Im Verlauf einer Woche wurde die Zytokompatibilität der Gele anhand der Proliferationsfähigkeit (PicoGreen-Assay), des Metabolismus (CCK-8-Assay) und der Vitalität (Live/Dead-Assay) der Zellen beurteilt. Dabei wurden Polymerkonzentrationen von 6 – 8 % sowie GelMA-Harze zweier verschiedener Molekulargewichte verglichen. Alle hergestellten Gele erwiesen sich als zytokompatibel, 6 % ige Gele ließen im Inneren jedoch zusätzlich eine beginnende Zellspreizung zu und ein niedriges GelMA-Molekulargewicht verstärkte die gemessene Proliferation. Die sich anschließende mechanische und physikalische Charakterisierung belegte, dass höher konzentrierte Gele einen größeren E-Modul aufwiesen und damit steifer waren. Eine Modifikation der Gele mit Fibronektin beeinflusste die Zellverträglichkeit weder positiv noch negativ und die Zugabe von Kollagen war wegen Entmischungseffekten nicht bewertbar. Es liegt die Vermutung nah, dass eine weitere Reduktion der Polymerkonzentration und damit Verringerung der Gelsteifigkeit der Schlüssel für mehr Zellspreizung und -wachstum ist. Da jedoch die Druckbarkeit des Bioharzes die weitere Senkung des GelMA-Gehalts limitiert, sollten zunächst Methoden entwickelt werden, welche die Netzwerkdichte des GelMAs anderweitig herabsetzen. / What seemed unthinkable a few years ago could be possible in the future: replacing diseased tissue with healthy tissue produced in vitro using the latest biofabrication techniques. Previous limits are being exceeded: While light-based bioprinting processes such as two-photon polymerization achieve resolutions down to the nanometer range, volumetric bioprinting (VB) makes it possible to print centimeter-sized constructs in just a few seconds. These speeds are unrivaled among bioprinting processes and are achieved because the bioresin is not cross-linked consecutively but simultaneously. The only limitation to date is the lack of suitable bioresins for VB. Therefore, the present work deals with the characterization and modification of a suitable bioresin: gelatine methacrylate (GelMA). Thanks to its composition, the established hydrogel system is similar to the extracellular matrix: The gelatine component enables biocompatibility and bioactivity through cell-adhesive as well as degradable amino acid sequences. At the same time, photo-crosslinkable methacryloyl substituents can be used to produce constructs with dimensional stability at 37 °C.
First, the bioresin was characterized cell biologically by casting, photopolymerizing and culturing GelMA cylinders loaded with the embryonic mouse fibroblast cell line NIH-3T3. Over the course of a week, the cytocompatibility of the gels was assessed based on proliferation capacity (PicoGreen assay), metabolism (CCK-8 assay) and viability (Live/Dead assay) of the cells. Polymer concentrations of 6 - 8 % and GelMA resins of two different molecular weights were compared. All gels produced were found to be cytocompatible, however, 6 % gels additionally allowed incipient cell spreading inside and a low GelMA molecular weight increased the measured proliferation. The subsequent mechanical and physical characterization showed that gels with higher concentration had a higher modulus of elasticity and were therefore stiffer. Modifications of the gels with fibronectin had neither a positive nor negative effect on cell compatibility and the addition of collagen could not be evaluated due to segregation effects. It is reasonable to assume that further reduction in polymer concentration and thus a reduction in gel stiffness is the key to more cell spreading and growth. However, since the printability of the bioresin limits further reduction of the GelMA content, methods should first be developed to reduce the network density of the GelMA in other ways.
|
Page generated in 0.0534 seconds