Spelling suggestions: "subject:"gelfandzahlen variety""
1 |
Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples / Mishchenko-Fomenko subalgebras of universal enveloping algebras of simple Lie algebrasCardoso, Maria Clara 02 August 2019 (has links)
Nesse trabalho introduzimos as subálgebras de Mishchenko-Fomenko. Apresentamos o problema de Vinberg e a solução de Feigin, Frenkel e Toledano-Laredo em Feigin, Frenkel e Toledano-Laredo (2010) Também é mostrada a solução para as álgebras de Lie de tipo A apresentada em Futorny e Molev (2015). É estudado também o artigo Molev (2013) onde são apresentados geradores do centro de Feigin-Frenkel para as álgebras de Lie de tipo B, C e D. Também são introduzidas as subálgebras de Gelfand-Tsetlin, subálgebras das álgebras envolventes universais das álgebras de Lie de tipo A. Apresentamos uma definição de súbálgebra de Gelfand-Tsetlin para as álgebras de Lie de tipo C, introduzida em Molev e Yakimova (2017). São exibidas as variedades de Gelfand-Tsetlin de $\\mathfrak_$ e $\\mathfrak_$, sendo provado que a variedade de Gelfand-Tsetlin de $\\mathfrak_$ é equidimensional de dimensão 4. Também é demonstrado um novo resultado sobre a equidimensionalidade de $\\mathfrak_$. / In this dissertation, we introduce the Mishchenko-Fomenko subalgebras. We show Vinberg\'s problem and the solution given by Feigin, Frenkel and Toledano-Laredo in Feigin, Frenkel and Toledano-Laredo (2010). We also show a solution for Lie algebras of type A found in Futorny and Molev (2015). We study the article Molev (2013) where generators for the Feigin-Frenkel center are shown for Lie algebras of type B, C and D. We introduce the Gelfand-Tsetlin subalgebras, which are subalgebras of the universal enveloping algebras of Lie algebras of type A. We show a definition of Gelfand-Tsetlin for Lie algebras of type C, introduced in Molev and Yakimova (2017). We exhibit the Gelfand-Tsetlin varieties related to $\\mathfrak_$ and $\\mathfrak_$. We prove that the Gelfand-Tsetlin variety for $\\mathfrak_$ is equidimensional of dimension 4 and we prove a new result about the equidimensionality of $\\mathfrak_$.
|
Page generated in 0.044 seconds